» Articles » PMID: 27563092

A 15-step Synthesis of (+)-ryanodol

Overview
Journal Science
Specialty Science
Date 2016 Aug 27
PMID 27563092
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

(+)-Ryanodine and (+)-ryanodol are complex diterpenoids that modulate intracellular calcium-ion release at ryanodine receptors, ion channels critical for skeletal and cardiac muscle excitation-contraction coupling and synaptic transmission. Chemical derivatization of these diterpenoids has demonstrated that certain peripheral structural modifications can alter binding affinity and selectivity among ryanodine receptor isoforms. Here, we report a short chemical synthesis of (+)-ryanodol that proceeds in only 15 steps from the commercially available terpene (S)-pulegone. The efficiency of the synthesis derives from the use of a Pauson-Khand reaction to rapidly build the carbon framework and a SeO2-mediated oxidation to install three oxygen atoms in a single step. This work highlights how strategic C-O bond constructions can streamline the synthesis of polyhydroxylated terpenes by minimizing protecting group and redox adjustments.

Citing Articles

Stereoselective transition metal-catalyzed [(2+2)+1] and [(2+2)+2] carbocyclization reactions using 1,6-enynes with 1,1-disubstituted olefins: construction of quaternary centers.

Ylagan R, Zhu Y, Evans P Chem Sci. 2024; 16(4):1490-1505.

PMID: 39713758 PMC: 11656196. DOI: 10.1039/d4sc02645d.


Stereo-Differentiating Asymmetric Rh(I)-Catalyzed Pauson-Khand Reaction: A DFT-Informed Approach to Thapsigargin Stereoisomers.

Haghighi F, Jesikiewicz L, Stahl C, Nafie J, Ortega-Vega A, Liu P J Am Chem Soc. 2024; 147(1):498-509.

PMID: 39702925 PMC: 11726561. DOI: 10.1021/jacs.4c11661.


Molecular complexity as a driving force for the advancement of organic synthesis.

Wright B, Sarpong R Nat Rev Chem. 2024; 8(10):776-792.

PMID: 39251714 PMC: 11608557. DOI: 10.1038/s41570-024-00645-8.


Baeyer-Villiger oxidation: a promising tool for the synthesis of natural products: a review.

Fatima S, Zahoor A, Khan S, Naqvi S, Hussain S, Nazeer U RSC Adv. 2024; 14(32):23423-23458.

PMID: 39055269 PMC: 11270005. DOI: 10.1039/d4ra03914a.


Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review.

Hanif M, Zahoor A, Saif M, Nazeer U, Ali K, Parveen B RSC Adv. 2024; 14(19):13100-13128.

PMID: 38655462 PMC: 11036177. DOI: 10.1039/d4ra01834f.


References
1.
Lanner J, Georgiou D, Joshi A, Hamilton S . Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010; 2(11):a003996. PMC: 2964179. DOI: 10.1101/cshperspect.a003996. View

2.
Meissner G . Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986; 261(14):6300-6. View

3.
Pessah I, Waterhouse A, Casida J . The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun. 1985; 128(1):449-56. DOI: 10.1016/0006-291x(85)91699-7. View

4.
Welch W, Ahmad S, Airey J, GERZON K, Humerickhouse R, Besch Jr H . Structural determinants of high-affinity binding of ryanoids to the vertebrate skeletal muscle ryanodine receptor: a comparative molecular field analysis. Biochemistry. 1994; 33(20):6074-85. DOI: 10.1021/bi00186a006. View

5.
Egi M, Ota Y, Nishimura Y, Shimizu K, Azechi K, Akai S . Efficient intramolecular cyclizations of phenoxyethynyl diols into multisubstituted α,β-unsaturated lactones. Org Lett. 2013; 15(16):4150-3. DOI: 10.1021/ol401824v. View