Zhou S, Sosina O, Bovijn J, Laurent L, Sharma V, Akbari P
Nat Genet. 2023; 55(8):1277-1287.
PMID: 37558884
DOI: 10.1038/s41588-023-01444-5.
Vohnoutka R, Kuppa A, Hegde Y, Chen Y, Pant A, Tohme M
J Mol Endocrinol. 2023; 70(3).
PMID: 36748836
PMC: 10947332.
DOI: 10.1530/JME-22-0131.
Kim A, Girgis C, McDonald M
Curr Osteoporos Rep. 2022; 20(6):505-515.
PMID: 36201122
PMC: 9718877.
DOI: 10.1007/s11914-022-00756-5.
Kague E, Karasik D
Genes (Basel). 2022; 13(2).
PMID: 35205324
PMC: 8872034.
DOI: 10.3390/genes13020279.
Rauner M, Foessl I, Formosa M, Kague E, Prijatelj V, Lopez N
Front Endocrinol (Lausanne). 2021; 12:731217.
PMID: 34938269
PMC: 8686830.
DOI: 10.3389/fendo.2021.731217.
Using "-omics" Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field.
Abood A, Farber C
Curr Osteoporos Rep. 2021; 19(4):369-380.
PMID: 34125409
PMC: 8767463.
DOI: 10.1007/s11914-021-00684-w.
Opportunities and Challenges in Functional Genomics Research in Osteoporosis: Report From a Workshop Held by the Causes Working Group of the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society on October 5th 2020.
Tobias J, Duncan E, Kague E, Hammond C, Gregson C, Bassett D
Front Endocrinol (Lausanne). 2021; 11:630875.
PMID: 33658983
PMC: 7917291.
DOI: 10.3389/fendo.2020.630875.
Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption.
McDonald M, Khoo W, Ng P, Xiao Y, Zamerli J, Thatcher P
Cell. 2021; 184(5):1330-1347.e13.
PMID: 33636130
PMC: 7938889.
DOI: 10.1016/j.cell.2021.02.002.
Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data.
Sabik O, Calabrese G, Taleghani E, Ackert-Bicknell C, Farber C
Cell Rep. 2020; 32(11):108145.
PMID: 32937138
PMC: 8344123.
DOI: 10.1016/j.celrep.2020.108145.
The Musculoskeletal Knowledge Portal: Making Omics Data Useful to the Broader Scientific Community.
Kiel D, Kemp J, Rivadeneira F, Westendorf J, Karasik D, Duncan E
J Bone Miner Res. 2020; 35(9):1626-1633.
PMID: 32777102
PMC: 8114232.
DOI: 10.1002/jbmr.4147.
A trans-eQTL network regulates osteoclast multinucleation and bone mass.
Pereira M, Ko J, Logan J, Protheroe H, Kim K, Tan A
Elife. 2020; 9.
PMID: 32553114
PMC: 7351491.
DOI: 10.7554/eLife.55549.
A road map for understanding molecular and genetic determinants of osteoporosis.
Yang T, Shen H, Liu A, Dong S, Zhang L, Deng F
Nat Rev Endocrinol. 2019; 16(2):91-103.
PMID: 31792439
PMC: 6980376.
DOI: 10.1038/s41574-019-0282-7.
The Progress of CRISPR/Cas9-Mediated Gene Editing in Generating Mouse/Zebrafish Models of Human Skeletal Diseases.
Wu N, Liu B, Du H, Zhao S, Li Y, Cheng X
Comput Struct Biotechnol J. 2019; 17:954-962.
PMID: 31360334
PMC: 6639410.
DOI: 10.1016/j.csbj.2019.06.006.
Mouse Models and Online Resources for Functional Analysis of Osteoporosis Genome-Wide Association Studies.
Maynard R, Ackert-Bicknell C
Front Endocrinol (Lausanne). 2019; 10:277.
PMID: 31133984
PMC: 6515928.
DOI: 10.3389/fendo.2019.00277.
Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns.
Brommage R, Powell D, Vogel P
Dis Model Mech. 2019; 12(5).
PMID: 31064765
PMC: 6550044.
DOI: 10.1242/dmm.038224.
Using zebrafish to study skeletal genomics.
Kwon R, Watson C, Karasik D
Bone. 2019; 126:37-50.
PMID: 30763636
PMC: 6626559.
DOI: 10.1016/j.bone.2019.02.009.
Generating mouse models for biomedical research: technological advances.
Gurumurthy C, Lloyd K
Dis Model Mech. 2019; 12(1).
PMID: 30626588
PMC: 6361157.
DOI: 10.1242/dmm.029462.
Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome.
Balmus G, Larrieu D, Barros A, Collins C, Abrudan M, Demir M
Nat Commun. 2018; 9(1):1700.
PMID: 29703891
PMC: 5923383.
DOI: 10.1038/s41467-018-03770-3.
Screening Gene Knockout Mice for Variation in Bone Mass: Analysis by μCT and Histomorphometry.
Rowe D, Adams D, Hong S, Zhang C, Shin D, Renata Rydzik C
Curr Osteoporos Rep. 2018; 16(2):77-94.
PMID: 29508144
DOI: 10.1007/s11914-018-0421-4.
Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.
Medina-Gomez C, Kemp J, Trajanoska K, Luan J, Chesi A, Ahluwalia T
Am J Hum Genet. 2018; 102(1):88-102.
PMID: 29304378
PMC: 5777980.
DOI: 10.1016/j.ajhg.2017.12.005.