» Articles » PMID: 27506449

Dual Therapeutic Action of a Neutralizing Anti-FGF2 Aptamer in Bone Disease and Bone Cancer Pain

Overview
Journal Mol Ther
Publisher Cell Press
Date 2016 Aug 11
PMID 27506449
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Fibroblast growth factor 2 (FGF2) plays a crucial role in bone remodeling and disease progression. However, the potential of FGF2 antagonists for treatment of patients with bone diseases has not yet been explored. Therefore, we generated a novel RNA aptamer, APT-F2, specific for human FGF2 and characterized its properties in vitro and in vivo. APT-F2 blocked binding of FGF2 to each of its four cellular receptors, inhibited FGF2-induced downstream signaling and cells proliferation, and restored osteoblast differentiation blocked by FGF2. APT-F2P, a PEGylated form of APT-F2, effectively blocked the bone disruption in mouse and rat models of arthritis and osteoporosis. Treatment with APT-F2P also exerted a strong analgesic effect, equivalent to morphine, in a mouse model of bone cancer pain. These findings demonstrated dual therapeutic action of APT-F2P in bone diseases and pain, providing a promising approach to the treatment of bone diseases.

Citing Articles

Reduction reactions dominate the interactions between Mg alloys and cells: Understanding the mechanisms.

Kim J, Gilbert J, Lv W, Du P, Pan H Bioact Mater. 2024; 45:363-387.

PMID: 39687558 PMC: 11647666. DOI: 10.1016/j.bioactmat.2024.11.020.


Polyamines promote xenobiotic nucleic acid synthesis by modified thermophilic polymerase mutants.

Hoshino H, Kasahara Y, Obika S RSC Chem Biol. 2024; 5(5):467-472.

PMID: 38725908 PMC: 11078213. DOI: 10.1039/d4cb00017j.


Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development.

Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R Molecules. 2024; 29(5).

PMID: 38474636 PMC: 10934870. DOI: 10.3390/molecules29051124.


RaptGen-Assisted Generation of an RNA/DNA Hybrid Aptamer against SARS-CoV-2 Spike Protein.

Adachi T, Nakamura S, Michishita A, Kawahara D, Yamamoto M, Hamada M Biochemistry. 2024; 63(7):906-912.

PMID: 38457656 PMC: 10993888. DOI: 10.1021/acs.biochem.3c00596.


Safety and tolerability of intravitreal umedaptanib pegol (anti-FGF2) for neovascular age-related macular degeneration (nAMD): a phase 1, open-label study.

Pereira D, Akita K, Bhisitkul R, Nishihata T, Ali Y, Nakamura E Eye (Lond). 2023; 38(6):1149-1154.

PMID: 38040965 PMC: 11009303. DOI: 10.1038/s41433-023-02849-6.


References
1.
Ornitz D, Marie P . FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002; 16(12):1446-65. DOI: 10.1101/gad.990702. View

2.
Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox W . Molecular pathology of the fibroblast growth factor family. Hum Mutat. 2009; 30(9):1245-55. PMC: 2793272. DOI: 10.1002/humu.21067. View

3.
Eda H, Aoki K, Marumo K, Fujii K, Ohkawa K . FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun. 2007; 366(2):471-5. DOI: 10.1016/j.bbrc.2007.11.140. View

4.
Dunstan C, Boyce R, Boyce B, Garrett I, Izbicka E, Burgess W . Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J Bone Miner Res. 1999; 14(6):953-9. DOI: 10.1359/jbmr.1999.14.6.953. View

5.
Chikazu D, Katagiri M, Ogasawara T, Ogata N, Shimoaka T, Takato T . Regulation of osteoclast differentiation by fibroblast growth factor 2: stimulation of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor expression in osteoblasts and inhibition of macrophage colony-stimulating.... J Bone Miner Res. 2001; 16(11):2074-81. DOI: 10.1359/jbmr.2001.16.11.2074. View