» Articles » PMID: 27476472

Inverse 4D Conformal Planning for Lung SBRT Using Particle Swarm Optimization

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2016 Aug 2
PMID 27476472
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.

Citing Articles

Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor.

Zhang X, Song X, Li G, Duan L, Wang G, Dai G Technol Cancer Res Treat. 2022; 21:15330338221143224.

PMID: 36476136 PMC: 9742719. DOI: 10.1177/15330338221143224.


Combining Serial and Parallel Functionality in Functional Lung Avoidance Radiation Therapy.

Vicente E, Modiri A, Kipritidis J, Yu K, Sun K, Cammin J Int J Radiat Oncol Biol Phys. 2022; 113(2):456-468.

PMID: 35279324 PMC: 9165847. DOI: 10.1016/j.ijrobp.2022.01.046.


Inverse radiotherapy planning based on bioeffect modelling for locally advanced left-sided breast cancer.

Stick L, Vogelius I, Modiri A, Rice S, Maraldo M, Sawant A Radiother Oncol. 2019; 136:9-14.

PMID: 31015135 PMC: 9462462. DOI: 10.1016/j.radonc.2019.03.018.


Inverse-planned deliverable 4D-IMRT for lung SBRT.

Hamzeei M, Modiri A, Kazemzadeh N, Hagan A, Sawant A Med Phys. 2018; 45(11):5145-5160.

PMID: 30153339 PMC: 6234081. DOI: 10.1002/mp.13157.


Virtual Bronchoscopy-Guided Treatment Planning to Map and Mitigate Radiation-Induced Airway Injury in Lung SAbR.

Kazemzadeh N, Modiri A, Samanta S, Yan Y, Bland R, Rozario T Int J Radiat Oncol Biol Phys. 2018; 102(1):210-218.

PMID: 29891202 PMC: 6089651. DOI: 10.1016/j.ijrobp.2018.04.060.


References
1.
Bortfeld T . Optimized planning using physical objectives and constraints. Semin Radiat Oncol. 1999; 9(1):20-34. DOI: 10.1016/s1053-4296(99)80052-6. View

2.
Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M . Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys. 2010; 36(12):5497-505. DOI: 10.1118/1.3253464. View

3.
Liang Y, Xu H, Yao J, Li Z, Chen W . Four-dimensional intensity-modulated radiotherapy planning for dynamic multileaf collimator tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 74(1):266-74. DOI: 10.1016/j.ijrobp.2008.10.088. View

4.
Ma Y, Chang D, Keall P, Xie Y, Park J, Suh T . Inverse planning for four-dimensional (4D) volumetric modulated arc therapy. Med Phys. 2010; 37(11):5627-33. PMC: 2967715. DOI: 10.1118/1.3497271. View

5.
Coolens C, Evans P, Seco J, Webb S, Blackall J, Rietzel E . The susceptibility of IMRT dose distributions to intrafraction organ motion: an investigation into smoothing filters derived from four dimensional computed tomography data. Med Phys. 2006; 33(8):2809-18. DOI: 10.1118/1.2219329. View