» Articles » PMID: 27458051

Mitochondrial Mg(2+) Homeostasis Decides Cellular Energy Metabolism and Vulnerability to Stress

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jul 27
PMID 27458051
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

Cellular energy production processes are composed of many Mg(2+) dependent enzymatic reactions. In fact, dysregulation of Mg(2+) homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg(2+) stores. Several biological stimuli alter mitochondrial Mg(2+) concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg(2+) alteration affect cellular energy metabolism remains unclear. Mg(2+) transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg(2+) uptake system. Here, we comprehensively analyzed intracellular Mg(2+) levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg(2+) homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg(2+) via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg(2+) level in response to physiological stimuli.

Citing Articles

Naltriben promotes tumor growth by activating the TRPM7-mediated development of the anti-inflammatory M2 phenotype.

Nascimento Da Conceicao V, Sun Y, Venkatesan M, De La Chapa Chapa J, De La Chapa J, Ramachandran K NPJ Precis Oncol. 2025; 9(1):29.

PMID: 39875485 PMC: 11775176. DOI: 10.1038/s41698-025-00815-x.


Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism.

Li P, Liu S, Wallerstein J, Villones R, Huang P, Lindkvist-Petersson K Nat Struct Mol Biol. 2024; .

PMID: 39609652 DOI: 10.1038/s41594-024-01432-1.


Structure and function of the human mitochondrial MRS2 channel.

He Z, Tu Y, Tsai C, Mount J, Zhang J, Tsai M Nat Struct Mol Biol. 2024; .

PMID: 39609651 DOI: 10.1038/s41594-024-01420-5.


The Connection Between Magnesium and Heart Health: Understanding Its Impact on Cardiovascular Wellness.

Siddiqui R, Nishat S, Alzaabi A, Alzaabi F, Al Tarawneh D, Al Tarawneh Y Cureus. 2024; 16(10):e72302.

PMID: 39583450 PMC: 11585403. DOI: 10.7759/cureus.72302.


Motorless transport of microtubules along tubulin, RanGTP, and salt gradients.

Shim S, Gouveia B, Ramm B, Valdez V, Petry S, Stone H Nat Commun. 2024; 15(1):9434.

PMID: 39487112 PMC: 11530526. DOI: 10.1038/s41467-024-53656-w.


References
1.
Romani A, Scarpa A . Regulation of cellular magnesium. Front Biosci. 2000; 5:D720-34. DOI: 10.2741/romani. View

2.
Zsurka G, Gregan J, Schweyen R . The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics. 2001; 72(2):158-68. DOI: 10.1006/geno.2000.6407. View

3.
Suzuki Y, Komatsu H, Ikeda T, Saito N, Araki S, Citterio D . Design and synthesis of Mg2+-selective fluoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living cell. Anal Chem. 2002; 74(6):1423-8. DOI: 10.1021/ac010914j. View

4.
Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen R, Schweigel M . Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J. 2003; 22(6):1235-44. PMC: 151051. DOI: 10.1093/emboj/cdg122. View

5.
Csordas G, Hajnoczky G . Plasticity of mitochondrial calcium signaling. J Biol Chem. 2003; 278(43):42273-82. DOI: 10.1074/jbc.M305248200. View