» Articles » PMID: 27446699

High-throughput Label-free Image Cytometry and Image-based Classification of Live Euglena Gracilis

Overview
Specialty Radiology
Date 2016 Jul 23
PMID 27446699
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate high-throughput label-free single-cell image cytometry and image-based classification of Euglena gracilis (a microalgal species) under different culture conditions. We perform it with our high-throughput optofluidic image cytometer composed of a time-stretch microscope with 780-nm resolution and 75-Hz line rate, and an inertial-focusing microfluidic device. By analyzing a large number of single-cell images from the image cytometer, we identify differences in morphological and intracellular phenotypes between E. gracilis cell groups and statistically classify them under various culture conditions including nitrogen deficiency for lipid induction. Our method holds promise for real-time evaluation of culture techniques for E. gracilis and possibly other microalgae in a non-invasive manner.

Citing Articles

Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second.

Zhou J, Mei L, Yu M, Ma X, Hou D, Yin Z Light Sci Appl. 2025; 14(1):76.

PMID: 39924500 PMC: 11808109. DOI: 10.1038/s41377-025-01754-9.


On-chip label-free cell classification based directly on off-axis holograms and spatial-frequency-invariant deep learning.

Dudaie M, Barnea I, Nissim N, Shaked N Sci Rep. 2023; 13(1):12370.

PMID: 37524884 PMC: 10390541. DOI: 10.1038/s41598-023-38160-3.


Photonic Microfluidic Technologies for Phytoplankton Research.

Algorri J, Roldan-Varona P, Fernandez-Manteca M, Lopez-Higuera J, Rodriguez-Cobo L, Cobo-Garcia A Biosensors (Basel). 2022; 12(11).

PMID: 36421145 PMC: 9688872. DOI: 10.3390/bios12111024.


Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities.

Iyer V, Yang Z, Ko J, Weissleder R, Issadore D Lab Chip. 2022; 22(17):3110-3121.

PMID: 35674283 PMC: 9798730. DOI: 10.1039/d2lc00024e.


The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae.

Zheng X, Duan X, Tu X, Jiang S, Song C Micromachines (Basel). 2021; 12(10).

PMID: 34683188 PMC: 8540680. DOI: 10.3390/mi12101137.


References
1.
Yelin D, Rizvi I, White W, Motz J, Hasan T, Bouma B . Three-dimensional miniature endoscopy. Nature. 2006; 443(7113):765. DOI: 10.1038/443765a. View

2.
Goda K, Tsia K, Jalali B . Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature. 2009; 458(7242):1145-9. DOI: 10.1038/nature07980. View

3.
Golan L, Yelin D . Flow cytometry using spectrally encoded confocal microscopy. Opt Lett. 2010; 35(13):2218-20. DOI: 10.1364/OL.35.002218. View

4.
Christenson L, Sims R . Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011; 29(6):686-702. DOI: 10.1016/j.biotechadv.2011.05.015. View

5.
Georgianna D, Mayfield S . Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. 2012; 488(7411):329-35. DOI: 10.1038/nature11479. View