» Articles » PMID: 27438777

Learning to Predict MiRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data

Overview
Specialty Biology
Date 2016 Jul 21
PMID 27438777
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO's local UTR sequence preferences and positional bias in 3'UTR isoforms. The duplex SVM model enables the prediction of non-canonical target sites and more accurately resolves miRNA interactions from AGO CLIP data than previous methods. The binding model is trained using a multi-task strategy to learn context-specific and common AGO sequence preferences. The duplex and common AGO binding models together outperform existing miRNA target prediction algorithms on held-out binding data. Open source code is available at https://bitbucket.org/leslielab/chimiric.

Citing Articles

Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.

Cohen-Davidi E, Veksler-Lublinsky I PLoS Comput Biol. 2024; 20(8):e1012385.

PMID: 39186797 PMC: 11379385. DOI: 10.1371/journal.pcbi.1012385.


Empowering prediction of miRNA-mRNA interactions in species with limited training data through transfer learning.

Hadad E, Rokach L, Veksler-Lublinsky I Heliyon. 2024; 10(7):e28000.

PMID: 38560149 PMC: 10981012. DOI: 10.1016/j.heliyon.2024.e28000.


Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling.

Gresova K, Alexiou P, Giassa I Biology (Basel). 2022; 11(12).

PMID: 36552307 PMC: 9775672. DOI: 10.3390/biology11121798.


Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation.

Nath N, Simm S Adv Exp Med Biol. 2022; 1385:109-131.

PMID: 36352212 DOI: 10.1007/978-3-031-08356-3_4.


MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools.

Abbas A, Shah A, Tanveer M, Ahmed W, Shah A, Fiaz S Mol Biol Rep. 2022; 49(6):5437-5450.

PMID: 35182321 DOI: 10.1007/s11033-022-07231-5.


References
1.
Linsley P, Schelter J, Burchard J, Kibukawa M, Martin M, Bartz S . Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 27(6):2240-52. PMC: 1820501. DOI: 10.1128/MCB.02005-06. View

2.
Miles W, Tschop K, Herr A, Ji J, Dyson N . Pumilio facilitates miRNA regulation of the E2F3 oncogene. Genes Dev. 2012; 26(4):356-68. PMC: 3289884. DOI: 10.1101/gad.182568.111. View

3.
Ray D, Kazan H, Cook K, Weirauch M, Najafabadi H, Li X . A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499(7457):172-7. PMC: 3929597. DOI: 10.1038/nature12311. View

4.
Wang X . Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. Bioinformatics. 2016; 32(9):1316-22. PMC: 6169475. DOI: 10.1093/bioinformatics/btw002. View

5.
Chi S, Hannon G, Darnell R . An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012; 19(3):321-7. PMC: 3541676. DOI: 10.1038/nsmb.2230. View