» Articles » PMID: 27418160

Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms

Abstract

Background: Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs.

Methods And Results: We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium-score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10(-5)) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10(-3)).

Conclusions: Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication.

Citing Articles

Family history as the strongest predictor of aortic and peripheral aneurysms in patients with intracranial aneurysms.

Lai P, Akama-Garren E, Can A, Tirado S, Castro V, Dligach D J Clin Neurosci. 2024; 126():128-134.

PMID: 38870642 PMC: 11343447. DOI: 10.1016/j.jocn.2024.05.041.


Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections.

Ganizada B, Veltrop R, Akbulut A, Koenen R, Accord R, Lorusso R Basic Res Cardiol. 2024; 119(3):371-395.

PMID: 38700707 PMC: 11143007. DOI: 10.1007/s00395-024-01053-1.


Matrisome and Immune Pathways Contribute to Extreme Vascular Outcomes in Williams-Beuren Syndrome.

Liu D, Billington Jr C, Raja N, Wong Z, Levin M, Resch W J Am Heart Assoc. 2024; 13(3):e031377.

PMID: 38293922 PMC: 11056152. DOI: 10.1161/JAHA.123.031377.


Prevalence and Characteristics of Intracranial Aneurysms in Hereditary Hemorrhagic Telangiectasia.

Cheng H, Faughnan M, terBrugge K, Liu H, Krings T AJNR Am J Neuroradiol. 2023; 44(12):1367-1372.

PMID: 38050014 PMC: 10714847. DOI: 10.3174/ajnr.A8058.


Comparison of Genes Associated with Thoracic and Abdominal Aortic Aneurysms.

Gyftopoulos A, Ziganshin B, Elefteriades J, Ochoa Chaar C Aorta (Stamford). 2023; 11(3):125-134.

PMID: 37279787 PMC: 10449569. DOI: 10.1055/s-0043-57266.


References
1.
Abecasis G, Auton A, Brooks L, DePristo M, Durbin R, Handsaker R . An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56-65. PMC: 3498066. DOI: 10.1038/nature11632. View

2.
Smelser D, Tromp G, Elmore J, Kuivaniemi H, Franklin D, Kirchner H . Population risk factor estimates for abdominal aortic aneurysm from electronic medical records: a case control study. BMC Cardiovasc Disord. 2014; 14:174. PMC: 4269847. DOI: 10.1186/1471-2261-14-174. View

3.
Foroud T, Lai D, Koller D, Vant Hof F, Kurki M, Anderson C . Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke. 2014; 45(11):3194-9. PMC: 4213281. DOI: 10.1161/STROKEAHA.114.006096. View

4.
Miyazawa N, Akiyama I, Yamagata Z . Risk factors for the association of intracranial and aortic aneurysms. Acta Neurochir (Wien). 2007; 149(3):221-9. DOI: 10.1007/s00701-006-1077-x. View

5.
Kim D, Van Ginhoven G, Milewicz D . Familial aggregation of both aortic and cerebral aneurysms: evidence for a common genetic basis in a subset of families. Neurosurgery. 2005; 56(4):655-61. DOI: 10.1227/01.neu.0000156787.55281.53. View