» Articles » PMID: 27391925

Mechanisms of ATP-Dependent Chromatin Remodeling Motors

Overview
Publisher Annual Reviews
Specialty Biophysics
Date 2016 Jul 9
PMID 27391925
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses.

Citing Articles

H3K56 acetylation regulates chromatin maturation following DNA replication.

Duan S, Nodelman I, Zhou H, Tsukiyama T, Bowman G, Zhang Z Nat Commun. 2025; 16(1):134.

PMID: 39746969 PMC: 11697131. DOI: 10.1038/s41467-024-55144-7.


Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis.

Abu Sailik F, Emerald B, Ansari S Open Biol. 2024; 14(10):240039.

PMID: 39471843 PMC: 11521604. DOI: 10.1098/rsob.240039.


Transcription-dependent mobility of single genes and genome-wide motions in live human cells.

Chu F, Clavijo A, Lee S, Zidovska A Nat Commun. 2024; 15(1):8879.

PMID: 39438437 PMC: 11496510. DOI: 10.1038/s41467-024-51149-4.


Phosphorylation regulates the chromatin remodeler SMARCAD1 in nucleosome binding, ATP hydrolysis, and histone exchange.

Aboulache B, Hoitsma N, Luger K J Biol Chem. 2024; 300(12):107893.

PMID: 39424143 PMC: 11742319. DOI: 10.1016/j.jbc.2024.107893.


ATP-dependent remodeling of chromatin condensates uncovers distinct mesoscale effects of two remodelers.

Moore C, Wong E, Kaur U, Chio U, Zhou Z, Ostrowski M bioRxiv. 2024; .

PMID: 39314305 PMC: 11418981. DOI: 10.1101/2024.09.10.611504.


References
1.
Zhou J, Fan J, Rangasamy D, Tremethick D . The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol. 2007; 14(11):1070-6. DOI: 10.1038/nsmb1323. View

2.
Stockdale C, Flaus A, Ferreira H, Owen-Hughes T . Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem. 2006; 281(24):16279-88. PMC: 1764501. DOI: 10.1074/jbc.M600682200. View

3.
Flaus A, Owen-Hughes T . Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol. 2003; 23(21):7767-79. PMC: 207611. DOI: 10.1128/MCB.23.21.7767-7779.2003. View

4.
Whitehouse I, Stockdale C, Flaus A, Szczelkun M, Owen-Hughes T . Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol Cell Biol. 2003; 23(6):1935-45. PMC: 149479. DOI: 10.1128/MCB.23.6.1935-1945.2003. View

5.
Kagalwala M, Glaus B, Dang W, Zofall M, Bartholomew B . Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 2004; 23(10):2092-104. PMC: 424408. DOI: 10.1038/sj.emboj.7600220. View