» Articles » PMID: 27387853

Structural and Mechanical Properties of Amyloid Beta Fibrils: A Combined Experimental and Theoretical Approach

Overview
Specialty Chemistry
Date 2016 Jul 9
PMID 27387853
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (Aβ40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and β-sheet rich fibrils. The fibrils (Aβ40)n, formed using n monomers, were equilibrated using all-atom MD simulations. The structural properties such as β-sheet character, twist, interstrand distance, and periodicity of these fibrils were found to be in agreement with experimental measurements. Furthermore, Young's modulus (Y) = 4.2 GPa computed using SS calculations was supported by measured values of 1.79 ± 0.41 and 3.2 ± 0.8 GPa provided by two separate AFM experiments. These results revealed size dependence of structural and material properties of amyloid fibrils and show the utility of such combined experimental and theoretical studies in the design of precisely engineered biomaterials.

Citing Articles

From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives.

Klamminger G, Frauenknecht K, Mittelbronn M, Kleine Borgmann F Free Neuropathol. 2023; 3.

PMID: 37284145 PMC: 10209863. DOI: 10.17879/freeneuropathology-2022-4210.


Structure of Anabaena flos-aquae gas vesicles revealed by cryo-ET.

Dutka P, Metskas L, Hurt R, Salahshoor H, Wang T, Malounda D Structure. 2023; 31(5):518-528.e6.

PMID: 37040766 PMC: 10185304. DOI: 10.1016/j.str.2023.03.011.


The physical basis of fabrication of amyloid-based hydrogels by lysozyme.

Kumari A, Ahmad B RSC Adv. 2022; 9(64):37424-37435.

PMID: 35542254 PMC: 9075597. DOI: 10.1039/c9ra07179b.


A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications.

Kell D, Laubscher G, Pretorius E Biochem J. 2022; 479(4):537-559.

PMID: 35195253 PMC: 8883497. DOI: 10.1042/BCJ20220016.


Label-Free Infrared Spectroscopic Imaging Reveals Heterogeneity of β-Sheet Aggregates in Alzheimer's Disease.

Confer M, Holcombe B, Foes A, Holmquist J, Walker S, Deb S J Phys Chem Lett. 2021; 12(39):9662-9671.

PMID: 34590866 PMC: 8933041. DOI: 10.1021/acs.jpclett.1c02306.


References
1.
Xu Z, Paparcone R, Buehler M . Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J. 2010; 98(10):2053-62. PMC: 2872369. DOI: 10.1016/j.bpj.2009.12.4317. View

2.
Nielsen L, Frokjaer S, Carpenter J, Brange J . Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. J Pharm Sci. 2000; 90(1):29-37. DOI: 10.1002/1520-6017(200101)90:1<29::aid-jps4>3.0.co;2-4. View

3.
Serpell L, Sunde M, Benson M, Tennent G, Pepys M, Fraser P . The protofilament substructure of amyloid fibrils. J Mol Biol. 2000; 300(5):1033-9. DOI: 10.1006/jmbi.2000.3908. View

4.
Hamada D, Yanagihara I, Tsumoto K . Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol. 2004; 22(2):93-7. DOI: 10.1016/j.tibtech.2003.12.003. View

5.
Hamley I . The amyloid beta peptide: a chemist's perspective. Role in Alzheimer's and fibrillization. Chem Rev. 2012; 112(10):5147-92. DOI: 10.1021/cr3000994. View