» Articles » PMID: 27382150

Methods for Causal Inference from Gene Perturbation Experiments and Validation

Overview
Specialty Science
Date 2016 Jul 7
PMID 27382150
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Inferring causal effects from observational and interventional data is a highly desirable but ambitious goal. Many of the computational and statistical methods are plagued by fundamental identifiability issues, instability, and unreliable performance, especially for large-scale systems with many measured variables. We present software and provide some validation of a recently developed methodology based on an invariance principle, called invariant causal prediction (ICP). The ICP method quantifies confidence probabilities for inferring causal structures and thus leads to more reliable and confirmatory statements for causal relations and predictions of external intervention effects. We validate the ICP method and some other procedures using large-scale genome-wide gene perturbation experiments in Saccharomyces cerevisiae The results suggest that prediction and prioritization of future experimental interventions, such as gene deletions, can be improved by using our statistical inference techniques.

Citing Articles

A large-scale benchmark for network inference from single-cell perturbation data.

Chevalley M, Roohani Y, Mehrjou A, Leskovec J, Schwab P Commun Biol. 2025; 8(1):412.

PMID: 40069299 PMC: 11897147. DOI: 10.1038/s42003-025-07764-y.


Causal models and prediction in cell line perturbation experiments.

Long J, Yang Y, Shimizu S, Pham T, Do K BMC Bioinformatics. 2025; 26(1):4.

PMID: 39773352 PMC: 11707890. DOI: 10.1186/s12859-024-06027-7.


EfficientNet-resDDSC: A Hybrid Deep Learning Model Integrating Residual Blocks and Dilated Convolutions for Inferring Gene Causality in Single-Cell Data.

Li A, Li M, Fei R, Mallik S, Hu B, Yu Y Interdiscip Sci. 2024; 17(1):166-184.

PMID: 39578307 DOI: 10.1007/s12539-024-00667-2.


Causality research based on phase space reconstruction.

Hu L, Sunu Z, She H, Fan B, Ma J, Da C PLoS One. 2024; 19(11):e0313990.

PMID: 39576828 PMC: 11584101. DOI: 10.1371/journal.pone.0313990.


AI-empowered perturbation proteomics for complex biological systems.

Qian L, Sun R, Aebersold R, Buhlmann P, Sander C, Guo T Cell Genom. 2024; 4(11):100691.

PMID: 39488205 PMC: 11605689. DOI: 10.1016/j.xgen.2024.100691.


References
1.
MacIsaac K, Wang T, Gordon D, Gifford D, Stormo G, Fraenkel E . An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics. 2006; 7:113. PMC: 1435934. DOI: 10.1186/1471-2105-7-113. View

2.
Sachs K, Perez O, Peer D, Lauffenburger D, Nolan G . Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005; 308(5721):523-9. DOI: 10.1126/science.1105809. View

3.
Buhlmann P, Rutimann P, Kalisch M . Controlling false positive selections in high-dimensional regression and causal inference. Stat Methods Med Res. 2011; 22(5):466-92. DOI: 10.1177/0962280211428371. View

4.
Cherry J, Hong E, Amundsen C, Balakrishnan R, Binkley G, Chan E . Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2011; 40(Database issue):D700-5. PMC: 3245034. DOI: 10.1093/nar/gkr1029. View

5.
Kemmeren P, Sameith K, van de Pasch L, Benschop J, Lenstra T, Margaritis T . Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell. 2014; 157(3):740-52. DOI: 10.1016/j.cell.2014.02.054. View