» Articles » PMID: 27375545

A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model

Overview
Journal Front Psychol
Date 2016 Jul 5
PMID 27375545
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

This study compared several parameter estimation methods for multi-unidimensional graded response models using their corresponding statistical software programs and packages. Specifically, we compared two marginal maximum likelihood (MML) approaches (Bock-Aitkin expectation-maximum algorithm, adaptive quadrature approach), four fully Bayesian algorithms (Gibbs sampling, Metropolis-Hastings, Hastings-within-Gibbs, blocked Metropolis), and the Metropolis-Hastings Robbins-Monro (MHRM) algorithm via the use of IRTPRO, BMIRT, and MATLAB. Simulation results suggested that, when the intertrait correlation was low, these estimation methods provided similar results. However, if the dimensions were moderately or highly correlated, Hastings-within-Gibbs had an overall better parameter recovery of item discrimination and intertrait correlation parameters. The performances of these estimation methods with different sample sizes and test lengths are also discussed.

Citing Articles

Performance of the Statistic for the Multidimensional Graded Response Model.

Su S, Wang C, Weiss D Educ Psychol Meas. 2021; 81(3):491-522.

PMID: 33994561 PMC: 8072952. DOI: 10.1177/0013164420958060.


Dimensionality and psychometric analysis of DLQI in a Brazilian population.

Jorge M, Sousa T, Pollo C, Paiva B, Ianhez M, Boza J Health Qual Life Outcomes. 2020; 18(1):268.

PMID: 32758227 PMC: 7409396. DOI: 10.1186/s12955-020-01523-9.


Gibbs Samplers for Logistic Item Response Models via the Pólya-Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy.

Jiang Z, Templin J Psychometrika. 2018; 84(2):358-374.

PMID: 30382548 DOI: 10.1007/s11336-018-9641-x.


A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework.

Bartolucci F, Farcomeni A, Scaccia L Psychometrika. 2017; 82(4):952-978.

PMID: 28900804 DOI: 10.1007/s11336-017-9576-7.


A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model.

Kuo T, Sheng Y Front Psychol. 2016; 7:880.

PMID: 27375545 PMC: 4901061. DOI: 10.3389/fpsyg.2016.00880.

References
1.
Forero C, Maydeu-Olivares A . Estimation of IRT graded response models: limited versus full information methods. Psychol Methods. 2009; 14(3):275-99. DOI: 10.1037/a0015825. View

2.
METROPOLIS N, ULAM S . The Monte Carlo method. J Am Stat Assoc. 1949; 44(247):335-41. DOI: 10.1080/01621459.1949.10483310. View

3.
Buchanan R . The development of the Minnesota Multiphasic Personality Inventory. J Hist Behav Sci. 1994; 30(2):148-61. DOI: 10.1002/1520-6696(199404)30:2<148::aid-jhbs2300300204>3.0.co;2-9. View

4.
Kuo T, Sheng Y . A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model. Front Psychol. 2016; 7:880. PMC: 4901061. DOI: 10.3389/fpsyg.2016.00880. View

5.
Geman S, Geman D . Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 2012; 6(6):721-41. DOI: 10.1109/tpami.1984.4767596. View