» Articles » PMID: 27364357

Ultrasensitive Multiplex Optical Quantification of Bacteria in Large Samples of Biofluids

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jul 2
PMID 27364357
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24-72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints.

Citing Articles

Recent advances in microfluidic-based spectroscopic approaches for pathogen detection.

Hussain M, He X, Wang C, Wang Y, Wang J, Chen M Biomicrofluidics. 2024; 18(3):031505.

PMID: 38855476 PMC: 11162289. DOI: 10.1063/5.0204987.


Challenges and perspectives of multi-virus biosensing techniques: A review.

Zheng Y, Song X, Fredj Z, Bian S, Sawan M Anal Chim Acta. 2023; 1244:340860.

PMID: 36737150 PMC: 9868144. DOI: 10.1016/j.aca.2023.340860.


Modular assembly of plasmonic core-satellite structures as highly brilliant SERS-encoded nanoparticles.

Pazos-Perez N, Fitzgerald J, Giannini V, Guerrini L, Alvarez-Puebla R Nanoscale Adv. 2022; 1(1):122-131.

PMID: 36132448 PMC: 9473162. DOI: 10.1039/c8na00257f.


Evaluation of a Luminometric Cell Counting System in Context of Antimicrobial Photodynamic Inactivation.

Lehnig M, Glass S, Lippmann N, Ziganshyna S, Eulenburg V, Werdehausen R Microorganisms. 2022; 10(5).

PMID: 35630394 PMC: 9147394. DOI: 10.3390/microorganisms10050950.


Positively-charged plasmonic nanostructures for SERS sensing applications.

Turino M, Pazos-Perez N, Guerrini L, Alvarez-Puebla R RSC Adv. 2022; 12(2):845-859.

PMID: 35425123 PMC: 8978927. DOI: 10.1039/d1ra07959j.


References
1.
Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H . Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew Chem Int Ed Engl. 2015; 54(17):5132-6. DOI: 10.1002/anie.201412294. View

2.
Adhikari N, Fowler R, Bhagwanjee S, Rubenfeld G . Critical care and the global burden of critical illness in adults. Lancet. 2010; 376(9749):1339-46. PMC: 7136988. DOI: 10.1016/S0140-6736(10)60446-1. View

3.
Piorek B, Lee S, Santiago J, Moskovits M, Banerjee S, Meinhart C . Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc Natl Acad Sci U S A. 2007; 104(48):18898-901. PMC: 2141879. DOI: 10.1073/pnas.0708596104. View

4.
Chen W, Li Q, Zheng W, Hu F, Zhang G, Wang Z . Identification of bacteria in water by a fluorescent array. Angew Chem Int Ed Engl. 2014; 53(50):13734-9. DOI: 10.1002/anie.201407606. View

5.
Li H, Xia H, Ding W, Li Y, Shi Q, Wang D . Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir. 2014; 30(9):2498-504. DOI: 10.1021/la4047148. View