Peptide De Novo Sequencing of Mixture Tandem Mass Spectra
Overview
Affiliations
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20-35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications.
Souza-Silva I, Carregari V, Steckelings U, Verano-Braga T Acta Physiol (Oxf). 2025; 241(2):e14280.
PMID: 39821680 PMC: 11737475. DOI: 10.1111/apha.14280.
Non-human peptides revealed in blood reflect the composition of intestinal microbiota.
Arapidi G, Urban A, Osetrova M, Shender V, Butenko I, Bukato O BMC Biol. 2024; 22(1):178.
PMID: 39183269 PMC: 11346180. DOI: 10.1186/s12915-024-01975-1.
Krobthong S, Jaroenchuensiri T, Yingchutrakul Y, Sukmak P, Visessanguan W, Pongkorpsakol P Foods. 2024; 13(15).
PMID: 39123656 PMC: 11312331. DOI: 10.3390/foods13152467.
Songnaka N, Lertcanawanichakul M, Hutapea A, Nisoa M, Krobthong S, Yingchutrakul Y Int J Mol Sci. 2023; 24(15).
PMID: 37569391 PMC: 10419081. DOI: 10.3390/ijms241512016.
Toxinology in the proteomics era: a review on arachnid venom proteomics.
Marchi F, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos L, Verano-Braga T J Venom Anim Toxins Incl Trop Dis. 2022; 28:20210034.
PMID: 35291269 PMC: 8893269. DOI: 10.1590/1678-9199-JVATITD-2021-0034.