» Articles » PMID: 27296804

Neural Stem Cell-encoded Temporal Patterning Delineates an Early Window of Malignant Susceptibility in Drosophila

Overview
Journal Elife
Specialty Biology
Date 2016 Jun 15
PMID 27296804
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.

Citing Articles

Non-autonomous regulation of neurogenesis by extrinsic cues: a perspective.

Nguyen P, Cheng L Oxf Open Neurosci. 2024; 1:kvac004.

PMID: 38596708 PMC: 10913833. DOI: 10.1093/oons/kvac004.


Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning.

Dillon N, Manning L, Hirono K, Doe C Development. 2024; 151(3).

PMID: 38230563 PMC: 10906098. DOI: 10.1242/dev.202504.


Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning.

Dillon N, Manning L, Hirono K, Doe C bioRxiv. 2023; .

PMID: 37961302 PMC: 10635090. DOI: 10.1101/2023.11.02.565340.


Spt5 interacts genetically with Myc and is limiting for brain tumor growth in .

Hofstetter J, Ogunleye A, Kutschke A, Buchholz L, Wolf E, Raabe T Life Sci Alliance. 2023; 7(1).

PMID: 37935464 PMC: 10629571. DOI: 10.26508/lsa.202302130.


Growth deregulation and interaction with host hemocytes contribute to tumor progression in a Drosophila brain tumor model.

Voutyraki C, Choromidis A, Meligkounaki A, Vlachopoulos N, Theodorou V, Grammenoudi S Proc Natl Acad Sci U S A. 2023; 120(33):e2221601120.

PMID: 37549261 PMC: 10438840. DOI: 10.1073/pnas.2221601120.


References
1.
Huang M, Weiss W . Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013; 3(10):a014415. PMC: 3784814. DOI: 10.1101/cshperspect.a014415. View

2.
Vogelstein B, Papadopoulos N, Velculescu V, Zhou S, Diaz Jr L, Kinzler K . Cancer genome landscapes. Science. 2013; 339(6127):1546-58. PMC: 3749880. DOI: 10.1126/science.1235122. View

3.
Wiese K, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O . The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med. 2013; 3(12):a014290. PMC: 3839600. DOI: 10.1101/cshperspect.a014290. View

4.
Swartling F, Grimmer M, Hackett C, Northcott P, Fan Q, Goldenberg D . Pleiotropic role for MYCN in medulloblastoma. Genes Dev. 2010; 24(10):1059-72. PMC: 2867210. DOI: 10.1101/gad.1907510. View

5.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View