Yamaguchi N, Takakura Y, Akiyama T
Front Immunol. 2024; 15:1488020.
PMID: 39524450
PMC: 11543444.
DOI: 10.3389/fimmu.2024.1488020.
Zhou X, Xu R, Wu Y, Zhou L, Xiang T
Genes Dis. 2024; 11(4):101070.
PMID: 38523673
PMC: 10958230.
DOI: 10.1016/j.gendis.2023.06.037.
Sasaki I, Kato T, Kanazawa N, Kaisho T
Adv Exp Med Biol. 2024; 1444:83-95.
PMID: 38467974
DOI: 10.1007/978-981-99-9781-7_6.
Takahama Y
Curr Opin Immunol. 2023; 83:102336.
PMID: 37210932
PMC: 10524569.
DOI: 10.1016/j.coi.2023.102336.
Cui H, Diedrich J, Wu D, Lim J, Nottingham R, Moresco J
Nat Cell Biol. 2023; 25(4):592-603.
PMID: 37059883
DOI: 10.1038/s41556-023-01118-8.
Proteasome substrate receptors and their therapeutic potential.
Osei-Amponsa V, Walters K
Trends Biochem Sci. 2022; 47(11):950-964.
PMID: 35817651
PMC: 9588529.
DOI: 10.1016/j.tibs.2022.06.006.
Tissue-specific proteasomes in generation of MHC class I peptides and CD8 T cells.
Matsuda-Lennikov M, Ohigashi I, Takahama Y
Curr Opin Immunol. 2022; 77:102217.
PMID: 35689940
PMC: 9339533.
DOI: 10.1016/j.coi.2022.102217.
Blockade of the CXCR3/CXCL10 axis ameliorates inflammation caused by immunoproteasome dysfunction.
Sasaki Y, Arimochi H, Otsuka K, Kondo H, Tsukumo S, Yasutomo K
JCI Insight. 2022; 7(7).
PMID: 35393946
PMC: 9057626.
DOI: 10.1172/jci.insight.152681.
The Function of Immunoproteasomes-An Immunologists' Perspective.
van den Eshof B, Medfai L, Nolfi E, Wawrzyniuk M, Sijts A
Cells. 2021; 10(12).
PMID: 34943869
PMC: 8699091.
DOI: 10.3390/cells10123360.
Mechanistic diversity in MHC class I antigen recognition.
Barbosa C, Barton J, Shepherd A, Mishto M
Biochem J. 2021; 478(24):4187-4202.
PMID: 34940832
PMC: 8786304.
DOI: 10.1042/BCJ20200910.
Microbial proteasomes as drug targets.
Zhang H, Lin G
PLoS Pathog. 2021; 17(12):e1010058.
PMID: 34882737
PMC: 8659679.
DOI: 10.1371/journal.ppat.1010058.
Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency.
Kanazawa N, Hemmi H, Kinjo N, Ohnishi H, Hamazaki J, Mishima H
Nat Commun. 2021; 12(1):6819.
PMID: 34819510
PMC: 8613290.
DOI: 10.1038/s41467-021-27085-y.
At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention.
Tundo G, Sbardella D, Oddone F, Kudriaeva A, Lacal P, Belogurov Jr A
Cancers (Basel). 2021; 13(19).
PMID: 34638337
PMC: 8507813.
DOI: 10.3390/cancers13194852.
Peptides for T cell selection in the thymus.
Ohigashi I, Matsuda-Lennikov M, Takahama Y
Peptides. 2021; 146:170671.
PMID: 34624431
PMC: 9309017.
DOI: 10.1016/j.peptides.2021.170671.
Thymoproteasome optimizes positive selection of CD8 T cells without contribution of negative selection.
Ohigashi I, Takahama Y
Adv Immunol. 2021; 149:1-23.
PMID: 33993918
PMC: 8237917.
DOI: 10.1016/bs.ai.2021.03.001.
The Immunoproteasome Subunits LMP2, LMP7 and MECL-1 Are Crucial Along the Induction of Cerebral Toxoplasmosis.
French T, Israel N, Dusedau H, Tersteegen A, Steffen J, Cammann C
Front Immunol. 2021; 12:619465.
PMID: 33968021
PMC: 8099150.
DOI: 10.3389/fimmu.2021.619465.
The Role of Proteasomes in the Thymus.
Frantzeskakis M, Takahama Y, Ohigashi I
Front Immunol. 2021; 12:646209.
PMID: 33815406
PMC: 8017227.
DOI: 10.3389/fimmu.2021.646209.
The thymoproteasome hardwires the TCR repertoire of CD8+ T cells in the cortex independent of negative selection.
Ohigashi I, Frantzeskakis M, Jacques A, Fujimori S, Ushio A, Yamashita F
J Exp Med. 2021; 218(4).
PMID: 33555295
PMC: 7873839.
DOI: 10.1084/jem.20201904.
Proteolytic dynamics of human 20S thymoproteasome.
Kuckelkorn U, Stubler S, Textoris-Taube K, Kilian C, Niewienda A, Henklein P
J Biol Chem. 2019; 294(19):7740-7754.
PMID: 30914481
PMC: 6514615.
DOI: 10.1074/jbc.RA118.007347.
Thymoproteasome and peptidic self.
Takahama Y, Ohigashi I, Murata S, Tanaka K
Immunogenetics. 2018; 71(3):217-221.
PMID: 30324237
DOI: 10.1007/s00251-018-1081-3.