» Articles » PMID: 27256971

Multisite Electrophysiological Recordings by Self-assembled Loose-patch-like Junctions Between Cultured Hippocampal Neurons and Mushroom-shaped Microelectrodes

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jun 4
PMID 27256971
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Substrate integrated planar microelectrode arrays is the "gold standard" method for millisecond-resolution, long-term, large-scale, cell-noninvasive electrophysiological recordings from mammalian neuronal networks. Nevertheless, these devices suffer from drawbacks that are solved by spike-detecting, spike-sorting and signal-averaging techniques which rely on estimated parameters that require user supervision to correct errors, merge clusters and remove outliers. Here we show that primary rat hippocampal neurons grown on micrometer sized gold mushroom-shaped microelectrodes (gMμE) functionalized simply by poly-ethylene-imine/laminin undergo self-assembly processes to form loose patch-like hybrid structures. More than 90% of the hybrids formed in this way record monophasic positive action potentials (APs). Of these, 34.5% record APs with amplitudes above 300 μV and up to 5,085 μV. This self-assembled neuron-gMμE configuration improves the recording quality as compared to planar MEA. This study characterizes and analyzes the electrophysiological signaling repertoire generated by the neurons-gMμE configuration, and discusses prospects to further improve the technology.

Citing Articles

Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array.

Wang J, Jung W, Gertner R, Park H, Ham D Nat Biomed Eng. 2025; .

PMID: 39934437 DOI: 10.1038/s41551-025-01352-5.


Organic electro-scattering antenna: Wireless and multisite probing of electrical potentials with high spatial resolution.

Desbiolles B, Hanna J, Ausilio R, Leccardi M, Yu Y, Sarkar D Sci Adv. 2024; 10(51):eadr8380.

PMID: 39705344 PMC: 11661451. DOI: 10.1126/sciadv.adr8380.


Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review.

Liu X, Gong Y, Jiang Z, Stevens T, Li W Front Neurosci. 2024; 18:1348434.

PMID: 38686330 PMC: 11057246. DOI: 10.3389/fnins.2024.1348434.


Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology.

Mateus J, Sousa M, Burrone J, Aguiar P J Neurosci. 2024; 44(11).

PMID: 38479812 PMC: 10941245. DOI: 10.1523/JNEUROSCI.1446-23.2023.


Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array.

Maita F, Maiolo L, Lucarini I, Del Rio De Vicente J, Sciortino A, Ledda M Adv Sci (Weinh). 2023; 10(24):e2301925.

PMID: 37357140 PMC: 10460871. DOI: 10.1002/advs.202301925.


References
1.
Buzsaki G, Stark E, Berenyi A, Khodagholy D, Kipke D, Yoon E . Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron. 2015; 86(1):92-105. PMC: 4392339. DOI: 10.1016/j.neuron.2015.01.028. View

2.
Shoham S, OConnor D, Segev R . How silent is the brain: is there a "dark matter" problem in neuroscience?. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006; 192(8):777-84. DOI: 10.1007/s00359-006-0117-6. View

3.
Aalipour A, Xu A, Leal-Ortiz S, Garner C, Melosh N . Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. Langmuir. 2014; 30(41):12362-7. DOI: 10.1021/la502273f. View

4.
Quian Quiroga R, Nadasdy Z, Ben-Shaul Y . Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004; 16(8):1661-87. DOI: 10.1162/089976604774201631. View

5.
Spira M, Oren R, Dormann A, Gitler D . Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J Comp Neurol. 2003; 457(3):293-312. DOI: 10.1002/cne.10569. View