» Articles » PMID: 27183912

Translin and Trax Differentially Regulate Telomere-associated Transcript Homeostasis

Overview
Journal Oncotarget
Specialty Oncology
Date 2016 May 18
PMID 27183912
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Translin and Trax proteins are highly conserved nucleic acid binding proteins that have been implicated in RNA regulation in a range of biological processes including tRNA processing, RNA interference, microRNA degradation during oncogenesis, spermatogenesis and neuronal regulation. Here, we explore the function of this paralogue pair of proteins in the fission yeast. Using transcript analysis we demonstrate a reciprocal mechanism for control of telomere-associated transcripts. Mutation of tfx1+ (Trax) elevates transcript levels from silenced sub-telomeric regions of the genome, but not other silenced regions, such as the peri-centromeric heterochromatin. In the case of some sub-telomeric transcripts, but not all, this elevation is dependent on the Trax paralogue, Tsn1 (Translin). In a reciprocal fashion, Tsn1 (Translin) serves to repress levels of transcripts (TERRAs) from the telomeric repeats, whereas Tfx1 serves to maintain these elevated levels. This reveals a novel mechanism for the regulation of telomeric transcripts. We extend this to demonstrate that human Translin and Trax also control telomere-associated transcript levels in human cells in a telomere-specific fashion.

Citing Articles

Translin facilitates RNA polymerase II dissociation and suppresses genome instability during RNase H2- and Dicer-deficiency.

Gomez-Escobar N, Alsaiari A, Alahamadi H, Alzahrani O, Vernon E, Althagafi H PLoS Genet. 2022; 18(6):e1010267.

PMID: 35714159 PMC: 9246224. DOI: 10.1371/journal.pgen.1010267.


Subtelomeric Transcription and its Regulation.

Kwapisz M, Morillon A J Mol Biol. 2020; 432(15):4199-4219.

PMID: 32035903 PMC: 7374410. DOI: 10.1016/j.jmb.2020.01.026.


The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions.

Weng Y, Chien T, Kuan I, Chern Y J Biomed Sci. 2018; 25(1):71.

PMID: 30285728 PMC: 6171312. DOI: 10.1186/s12929-018-0473-x.


Structural insights into Drosophila-C3PO complex assembly and 'Dynamic Side Port' model in substrate entry and release.

Mo X, Yang X, Yuan Y Nucleic Acids Res. 2018; 46(16):8590-8604.

PMID: 29860349 PMC: 6144819. DOI: 10.1093/nar/gky465.


Human germ/stem cell-specific gene TEX19 influences cancer cell proliferation and cancer prognosis.

Planells-Palop V, Hazazi A, Feichtinger J, Jezkova J, Thallinger G, Alsiwiehri N Mol Cancer. 2017; 16(1):84.

PMID: 28446200 PMC: 5406905. DOI: 10.1186/s12943-017-0653-4.

References
1.
Laufman O, Ben Yosef R, Adir N, Manor H . Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX. Nucleic Acids Res. 2005; 33(13):4128-39. PMC: 1180670. DOI: 10.1093/nar/gki727. View

2.
Jaendling A, McFarlane R . Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J. 2010; 429(2):225-34. DOI: 10.1042/BJ20100273. View

3.
Lorenzi L, Bah A, Wischnewski H, Shchepachev V, Soneson C, Santagostino M . Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels. EMBO J. 2014; 34(1):115-29. PMC: 4291484. DOI: 10.15252/embj.201489559. View

4.
Sarek G, Marzec P, Margalef P, Boulton S . Molecular basis of telomere dysfunction in human genetic diseases. Nat Struct Mol Biol. 2015; 22(11):867-74. DOI: 10.1038/nsmb.3093. View

5.
Bah A, Wischnewski H, Shchepachev V, Azzalin C . The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res. 2011; 40(7):2995-3005. PMC: 3326308. DOI: 10.1093/nar/gkr1153. View