» Articles » PMID: 27182110

3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

Abstract

The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices.

Citing Articles

Large-angle Lorentz Four-dimensional scanning transmission electron microscopy for simultaneous local magnetization, strain and structure mapping.

Kang S, Tollner M, Wang D, Minnert C, Durst K, Caron A Nat Commun. 2025; 16(1):1305.

PMID: 39900632 PMC: 11790882. DOI: 10.1038/s41467-025-56521-6.


Nanoscale Three-Dimensional Charge Density and Electric Field Mapping by Electron Holographic Tomography.

Zheng F, Migunov V, Caron J, Du H, Pozzi G, Dunin-Borkowski R Nano Lett. 2023; 23(3):843-849.

PMID: 36689622 PMC: 9912371. DOI: 10.1021/acs.nanolett.2c03879.


Real-Space Observations of Three-Dimensional Antiskyrmions and Skyrmion Strings.

Yu X, Iakoubovskii K, Yasin F, Peng L, Nakajima K, Schneider S Nano Lett. 2022; 22(23):9358-9364.

PMID: 36383503 PMC: 9756337. DOI: 10.1021/acs.nanolett.2c03142.


Chirality flips of skyrmion bubbles.

Yao Y, Ding B, Liang J, Li H, Shen X, Yu R Nat Commun. 2022; 13(1):5991.

PMID: 36220821 PMC: 9553972. DOI: 10.1038/s41467-022-33700-3.


Distinguishing Local Demagnetization Contribution to the Magnetization Process in Multisegmented Nanowires.

Marques-Marchan J, Fernandez-Roldan J, Bran C, Puttock R, Barton C, Moreno J Nanomaterials (Basel). 2022; 12(12).

PMID: 35745306 PMC: 9229024. DOI: 10.3390/nano12121968.


References
1.
Tonomura , Matsuda , Endo , Arii , Mihama . Holographic interference electron microscopy for determining specimen magnetic structure and thickness distribution. Phys Rev B Condens Matter. 1986; 34(5):3397-3402. DOI: 10.1103/physrevb.34.3397. View

2.
Parkin S, Hayashi M, Thomas L . Magnetic domain-wall racetrack memory. Science. 2008; 320(5873):190-4. DOI: 10.1126/science.1145799. View

3.
Fernandez-Pacheco A, Serrano-Ramon L, Michalik J, Ibarra M, de Teresa J, OBrien L . Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci Rep. 2013; 3:1492. PMC: 3603301. DOI: 10.1038/srep01492. View

4.
Wolf D, Lubk A, Lichte H . Weighted simultaneous iterative reconstruction technique for single-axis tomography. Ultramicroscopy. 2013; 136:15-25. DOI: 10.1016/j.ultramic.2013.07.016. View

5.
Lavrijsen R, Lee J, Fernandez-Pacheco A, Petit D, Mansell R, Cowburn R . Magnetic ratchet for three-dimensional spintronic memory and logic. Nature. 2013; 493(7434):647-50. DOI: 10.1038/nature11733. View