» Articles » PMID: 27154257

Ca3(PO4)2 Precipitated Layering of an in Situ Hybridized PVA/Ca2O4Si Nanofibrous Antibacterial Wound Dressing

Overview
Journal Int J Pharm
Specialties Chemistry
Pharmacology
Date 2016 May 8
PMID 27154257
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

The aim of this study was to develop an in situ hybridized poly(vinyl alcohol)/calcium silicate (PVA/Ca2OSi) nanofibrous antibacterial wound dressing with calcium phosphate [Ca3(PO4)2] surface precipitation for enhanced bioactivity. This was achieved by hybridizing the antibacterial ions Zn(2+) and/or Ag(+) in a Ca2O4Si composite. The hybridization effect on the thermal behavior, physicochemical, morphological, and physicomechanical properties of the nanofibers was studied using Differential Scanning calorimetric (DSC), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Textural Analysis, respectively. In vitro bioactivity, biodegradation and pH variations of the nanofiber composite were evaluated in Simulated Body Fluid (SBF). The antibacterial activity was assessed against Staphylococcus aureus and Pseudomonas aeruginosa. Hybridization of Zn(2+) and/or Ag(+) into the PVA/Ca2O4Si nanofiber composite was confirmed by DSC, XRD and FTIR. The thickness of the nanofibers was dependent on the presence of Zn(2+) and Ag(+) as confirmed by SEM. The nanofibers displayed enhanced tensile strength (19-115.73MPa) compared to native PVA. Zn(2+) and/or Ag(+) hybridized nanofibers showed relatively enhanced in vitro bioactivity, biodegradation (90%) and antibacterial activity compared with the native PVA/Ca2O4Si nanofiber composite. Results of this study has shown that the PVA/Ca2O4Si composite hybridized with both Zn(2+) and Ag(+) may be promising as an antibacterial wound dressing with a nanofibrous archetype with enhanced bioactivity.

Citing Articles

Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties.

Mabrouk M, Das D, Salem Z, Beherei H Molecules. 2021; 26(4).

PMID: 33670668 PMC: 7922738. DOI: 10.3390/molecules26041077.


Cancer Cells Treated by Clusters of Copper Oxide Doped Calcium Silicate.

Mabrouk M, Kenawy S, El-Bassyouni G, Ibrahim Soliman A, Hamzawy E Adv Pharm Bull. 2019; 9(1):102-109.

PMID: 31011564 PMC: 6468231. DOI: 10.15171/apb.2019.013.


Artificial, Triple-Layered, Nanomembranous Wound Patch for Potential Diabetic Foot Ulcer Intervention.

Mabrouk M, Kumar P, Choonara Y, du Toit L, Pillay V Materials (Basel). 2018; 11(11).

PMID: 30380682 PMC: 6265852. DOI: 10.3390/ma11112128.