» Articles » PMID: 27144219

Normal Volumes and Microstructural Integrity of Deep Gray Matter Structures in AQP4+ NMOSD

Overview
Specialty Neurology
Date 2016 May 5
PMID 27144219
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD).

Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging.

Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups.

Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients.

Citing Articles

Thalamic volume differentiates multiple sclerosis from neuromyelitis optica spectrum disorder: MRI-based retrospective study.

Alosaimi M, Alkanhal H, Aldeligan S, Alkhawajah N, Albishi A, Hilabi B Front Neurol. 2025; 15():1491193.

PMID: 39830197 PMC: 11739352. DOI: 10.3389/fneur.2024.1491193.


Brain tissue integrity in neuromyelitis optica spectrum disorder through T1-w/T2-w ratio, MTR and DTI.

Boaventura M, Fragoso D, Avolio I, Pereira S, Callegaro D, Sato D J Neurol. 2025; 272(2):157.

PMID: 39821642 DOI: 10.1007/s00415-024-12869-1.


Aquaporin-4 Immunoglobulin G-seropositive Neuromyelitis Optica Spectrum Disorder MRI Characteristics: Data Analysis from the International Real-World PAMRINO Study Cohort.

Chien C, Cruz E Silva V, Geiter E, Meier D, Zimmermann H, Bichuetti D Radiology. 2024; 313(2):e233099.

PMID: 39530897 PMC: 11605104. DOI: 10.1148/radiol.233099.


Exploring subcortical pathology and processing speed in neuromyelitis optica spectrum disorder with myelin water imaging.

Tsai C, Combes A, McMullen K, Kolind S, Traboulsee A J Neuroimaging. 2024; 35(1):e13250.

PMID: 39511966 PMC: 11625695. DOI: 10.1111/jon.13250.


Paths to hippocampal damage in neuromyelitis optica spectrum disorders.

Zakani M, Nigritinou M, Ponleitner M, Takai Y, Hofmann D, Hillebrand S Neuropathol Appl Neurobiol. 2023; 49(2):e12893.

PMID: 36811295 PMC: 10947283. DOI: 10.1111/nan.12893.


References
1.
Zhang N, Li Y, Fu Y, Shao J, Luo L, Yang L . Cognitive impairment in Chinese neuromyelitis optica. Mult Scler. 2015; 21(14):1839-46. DOI: 10.1177/1352458515576982. View

2.
Wingerchuk D, Banwell B, Bennett J, Cabre P, Carroll W, Chitnis T . International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015; 85(2):177-89. PMC: 4515040. DOI: 10.1212/WNL.0000000000001729. View

3.
Calabrese M, Oh M, Favaretto A, Rinaldi F, Poretto V, Alessio S . No MRI evidence of cortical lesions in neuromyelitis optica. Neurology. 2012; 79(16):1671-6. DOI: 10.1212/WNL.0b013e31826e9a96. View

4.
Finke C, Kopp U, Pajkert A, Behrens J, Leypoldt F, Wuerfel J . Structural Hippocampal Damage Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Biol Psychiatry. 2015; 79(9):727-734. DOI: 10.1016/j.biopsych.2015.02.024. View

5.
Fischl B, Salat D, Busa E, Albert M, Dieterich M, Haselgrove C . Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33(3):341-55. DOI: 10.1016/s0896-6273(02)00569-x. View