Hou X, Zhang Y, Trujillo-de Santiago G, Alvarez M, Ribas J, Jonas S
Nat Rev Mater. 2024; 2(5).
PMID: 38993477
PMC: 11237287.
DOI: 10.1038/natrevmats.2017.16.
Lohss M, Hammersley E, Ghodadra A
3D Print Med. 2023; 9(1):5.
PMID: 36930362
PMC: 10022280.
DOI: 10.1186/s41205-023-00172-0.
Henriques J, Amaro A, Piedade A
Polymers (Basel). 2023; 15(3).
PMID: 36771780
PMC: 9920326.
DOI: 10.3390/polym15030480.
Komada T, Kamomae T, Matsushima M, Hyodo R, Naganawa S
Nagoya J Med Sci. 2022; 84(2):477-483.
PMID: 35967941
PMC: 9350560.
DOI: 10.18999/nagjms.84.2.477.
Cornejo J, Cornejo-Aguilar J, Vargas M, Helguero C, de Andrade R, Torres-Montoya S
Biomed Res Int. 2022; 2022:6797745.
PMID: 35372574
PMC: 8970887.
DOI: 10.1155/2022/6797745.
Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study.
Kaufmann R, Zech C, Takes M, Brantner P, Thieringer F, Deutschmann M
J Digit Imaging. 2022; 35(1):9-20.
PMID: 34997376
PMC: 8854516.
DOI: 10.1007/s10278-021-00553-z.
A Systematic Review and Meta-Analysis of 3D Printing Technology for the Treatment of Acetabular Fractures.
Cao J, Zhu H, Gao C
Biomed Res Int. 2021; 2021:5018791.
PMID: 34458367
PMC: 8387177.
DOI: 10.1155/2021/5018791.
Application of 3D Printing in Preoperative Planning.
Segaran N, Saini G, Mayer J, Naidu S, Patel I, Alzubaidi S
J Clin Med. 2021; 10(5).
PMID: 33652844
PMC: 7956651.
DOI: 10.3390/jcm10050917.
Comparison of the feasibility of 3D printing technology in the treatment of pelvic fractures: a systematic review and meta-analysis of randomized controlled trials and prospective comparative studies.
Wang J, Wang X, Wang B, Xie L, Zheng W, Chen H
Eur J Trauma Emerg Surg. 2020; 47(6):1699-1712.
PMID: 33130976
DOI: 10.1007/s00068-020-01532-9.
Hybrid computed tomography and magnetic resonance imaging 3D printed models for neurosurgery planning.
Martin-Noguerol T, Paulano-Godino F, Riascos R, Calabia-Del-Campo J, Marquez-Rivas J, Luna A
Ann Transl Med. 2020; 7(22):684.
PMID: 31930085
PMC: 6944557.
DOI: 10.21037/atm.2019.10.109.
Artificial vascular models for endovascular training (3D printing).
Torres I, De Luccia N
Innov Surg Sci. 2019; 3(3):225-234.
PMID: 31579786
PMC: 6604582.
DOI: 10.1515/iss-2018-0020.
3D Bioprinting: from Benches to Translational Applications.
Heinrich M, Liu W, Jimenez A, Yang J, Akpek A, Liu X
Small. 2019; 15(23):e1805510.
PMID: 31033203
PMC: 6752725.
DOI: 10.1002/smll.201805510.
Medical Applications for 3D Printing: Recent Developments.
Paul G, Rezaienia A, Wen P, Condoor S, Parkar N, King W
Mo Med. 2018; 115(1):75-81.
PMID: 30228688
PMC: 6139809.
Three-dimensional (3D) printing and its applications for aortic diseases.
Hangge P, Pershad Y, Witting A, Albadawi H, Oklu R
Cardiovasc Diagn Ther. 2018; 8(Suppl 1):S19-S25.
PMID: 29850416
PMC: 5949593.
DOI: 10.21037/cdt.2017.10.02.
The Various Applications of 3D Printing in Cardiovascular Diseases.
El Sabbagh A, Eleid M, Al-Hijji M, Anavekar N, Holmes D, Nkomo V
Curr Cardiol Rep. 2018; 20(6):47.
PMID: 29749577
DOI: 10.1007/s11886-018-0992-9.
Bioengineered models of thrombosis: methods and techniques.
Zhang Y, Oklu R, Albadawi H
Cardiovasc Diagn Ther. 2018; 7(Suppl 3):S329-S335.
PMID: 29399537
PMC: 5778531.
DOI: 10.21037/cdt.2017.08.08.
Spatially and Temporally Controlled Hydrogels for Tissue Engineering.
Leijten J, Seo J, Yue K, Trujillo-de Santiago G, Tamayol A, Ruiz-Esparza G
Mater Sci Eng R Rep. 2017; 119:1-35.
PMID: 29200661
PMC: 5708586.
DOI: 10.1016/j.mser.2017.07.001.
Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
Liu W, Heinrich M, Zhou Y, Akpek A, Hu N, Liu X
Adv Healthc Mater. 2017; 6(12).
PMID: 28464555
PMC: 5545786.
DOI: 10.1002/adhm.201601451.