» Articles » PMID: 27098048

Optimization of Return Electrodes in Neurostimulating Arrays

Overview
Journal J Neural Eng
Date 2016 Apr 22
PMID 27098048
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence.

Approach: To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation.

Main Results: Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation.

Significance: Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

Citing Articles

Ultrathin rubbery bio-optoelectronic stimulators for untethered cardiac stimulation.

Rao Z, Ershad F, Guan Y, Mesquita F, Curty da Costa E, Morales-Garza M Sci Adv. 2024; 10(49):eadq5061.

PMID: 39642227 PMC: 11623305. DOI: 10.1126/sciadv.adq5061.


Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current.

Seo H, Cha S, Jeong Y, Ahn J, Lee K, Kim S Biomed Eng Lett. 2024; 14(2):355-365.

PMID: 38374901 PMC: 10874361. DOI: 10.1007/s13534-023-00342-3.


Photovoltaic implant simulator reveals resolution limits in subretinal prosthesis.

Chen Z, Wang B, Goldstein A, Butt E, Mathieson K, Palanker D J Neural Eng. 2022; 19(5).

PMID: 36055219 PMC: 10752425. DOI: 10.1088/1741-2552/ac8ed8.


Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.

Sabel B, Kresinsky A, Cardenas-Morales L, Haueisen J, Hunold A, Dannhauer M IEEE Trans Neural Syst Rehabil Eng. 2021; 29:2133-2141.

PMID: 34648453 PMC: 8594910. DOI: 10.1109/TNSRE.2021.3120148.


Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces.

Fang Y, Prominski A, Rotenberg M, Meng L, Acaron Ledesma H, Lv Y Nat Nanotechnol. 2020; 16(2):206-213.

PMID: 33288948 PMC: 8801202. DOI: 10.1038/s41565-020-00805-z.


References
1.
Goetz G, Mandel Y, Manivanh R, Palanker D, cizmar T . Holographic display system for restoration of sight to the blind. J Neural Eng. 2013; 10(5):056021. PMC: 3893035. DOI: 10.1088/1741-2560/10/5/056021. View

2.
Lorach H, Goetz G, Mandel Y, Lei X, Galambos L, Kamins T . Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vision Res. 2014; 111(Pt B):142-8. PMC: 4375097. DOI: 10.1016/j.visres.2014.09.007. View

3.
Wilke R, Moghadam G, Lovell N, Suaning G, Dokos S . Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng. 2011; 8(4):046016. DOI: 10.1088/1741-2560/8/4/046016. View

4.
Santos A, Humayun M, de Juan Jr E, Greenburg R, Marsh M, Klock I . Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol. 1997; 115(4):511-5. DOI: 10.1001/archopht.1997.01100150513011. View

5.
Joucla S, Yvert B . Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications. J Physiol Paris. 2011; 106(3-4):146-58. DOI: 10.1016/j.jphysparis.2011.10.003. View