» Articles » PMID: 27061024

Designer Micelles Accelerate Flux Through Engineered Metabolism in E. Coli and Support Biocompatible Chemistry

Overview
Specialty Chemistry
Date 2016 Apr 11
PMID 27061024
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Synthetic biology has enabled the production of many value-added chemicals via microbial fermentation. However, the problem of low product titers from recombinant pathways has limited the utility of this approach. Methods to increase metabolic flux are therefore critical to the success of metabolic engineering. Here we demonstrate that vitamin E-derived designer micelles, originally developed for use in synthetic chemistry, are biocompatible and accelerate flux through a styrene production pathway in Escherichia coli. We show that these micelles associate non-covalently with the bacterial outer-membrane and that this interaction increases membrane permeability. In addition, these micelles also accommodate both heterogeneous and organic-soluble transition metal catalysts and accelerate biocompatible cyclopropanation in vivo. Overall, this work demonstrates that these surfactants hold great promise for further application in the field of synthetic biotechnology, and for expanding the types of molecules that can be readily accessed from renewable resources via the combination of microbial fermentation and biocompatible chemistry.

Citing Articles

Complete integration of carbene-transfer chemistry into biosynthesis.

Huang J, Quest A, Cruz-Morales P, Deng K, Pereira J, Van Cura D Nature. 2023; 617(7960):403-408.

PMID: 37138074 PMC: 11334723. DOI: 10.1038/s41586-023-06027-2.


Overproduction of Native and Click-able Colanic Acid Slime from Engineered .

Sadler J, Brewster R, Kjeldsen A, Gonzalez A, Nirkko J, Varzandeh S JACS Au. 2023; 3(2):378-383.

PMID: 36873680 PMC: 9976346. DOI: 10.1021/jacsau.2c00583.


Palladium Nanoparticles from G20 Catalyze Biocompatible Sonogashira and Biohydrogenation Cascades.

Era Y, Dennis J, Horsfall L, Wallace S JACS Au. 2022; 2(11):2446-2452.

PMID: 36465541 PMC: 9709939. DOI: 10.1021/jacsau.2c00366.


Tyramine Derivatives Catalyze the Aldol Dimerization of Butyraldehyde in the Presence of Escherichia coli.

Dennis J, Sadler J, Wallace S Chembiochem. 2022; 23(17):e202200238.

PMID: 35687270 PMC: 9540883. DOI: 10.1002/cbic.202200238.


Micellar catalysis of the Suzuki Miyaura reaction using biogenic Pd nanoparticles from .

Era Y, Dennis J, Wallace S, Horsfall L Green Chem. 2021; 23(22):8886-8890.

PMID: 34912180 PMC: 8593813. DOI: 10.1039/d1gc02392f.


References
1.
Li C, Trost B . Green chemistry for chemical synthesis. Proc Natl Acad Sci U S A. 2008; 105(36):13197-202. PMC: 2533168. DOI: 10.1073/pnas.0804348105. View

2.
Hu Z, Zhang X, Wu Z, Qi H, Wang Z . Export of intracellular Monascus pigments by two-stage microbial fermentation in nonionic surfactant micelle aqueous solution. J Biotechnol. 2012; 162(2-3):202-9. DOI: 10.1016/j.jbiotec.2012.10.004. View

3.
Mingardon F, Clement C, Hirano K, Nhan M, Luning E, Chanal A . Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol Bioeng. 2014; 112(5):879-88. PMC: 4406151. DOI: 10.1002/bit.25511. View

4.
Fisher M, Boyarskiy S, Yamada M, Kong N, Bauer S, Tullman-Ercek D . Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol. 2013; 3(1):30-40. DOI: 10.1021/sb400065q. View

5.
Jones C, Hernandez Lozada N, Pfleger B . Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol. 2015; 99(22):9381-93. PMC: 4628842. DOI: 10.1007/s00253-015-6963-9. View