» Articles » PMID: 27042383

Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion?

Overview
Journal ACS Macro Lett
Specialty Chemistry
Date 2016 Apr 5
PMID 27042383
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

New spherical diblock copolymer nanoparticles were synthesized via RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) at 70 °C and 20% w/w solids using either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric stabilizer block. Both of these stabilizers contain carboxylic acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals are grown at an initial pH of 9.5 in the presence of these two types of nanoparticles, it is found that the anionic poly(proline methacrylate)-stabilized particles are occluded uniformly throughout the crystals (up to 6.8% by mass, 14.0% by volume). In contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilized particles show no signs of occlusion into calcite crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore does not guarantee efficient occlusion: overall anionic character is an additional prerequisite.

Citing Articles

Proline-Functionalized Magnetic Nanoparticles as Highly Performing Asymmetric Catalysts.

Alvarez-Bermudez O, Landfester K, Zhang K, Munoz-Espi R Macromol Rapid Commun. 2024; 45(24):e2400615.

PMID: 39259266 PMC: 11661664. DOI: 10.1002/marc.202400615.


pH-Responsive Nanogels Generated by Polymerization-Induced Self-Assembly of a Succinate-Functional Monomer.

Du R, Fielding L Macromolecules. 2024; 57(8):3496-3501.

PMID: 38681060 PMC: 11044572. DOI: 10.1021/acs.macromol.4c00427.


Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation.

Astier S, Johnson E, Norvilaite O, Varlas S, Brotherton E, Sanderson G Langmuir. 2024; .

PMID: 38320303 PMC: 10883040. DOI: 10.1021/acs.langmuir.3c03392.


Block Copolymer Nanoparticles are Effective Dispersants for Micrometer-Sized Organic Crystalline Particles.

Chan D, Kynaston E, Lindsay C, Taylor P, Armes S ACS Appl Mater Interfaces. 2021; 13(25):30235-30243.

PMID: 34151553 PMC: 8289232. DOI: 10.1021/acsami.1c08261.


In situ imaging of two-dimensional surface growth reveals the prevalence and role of defects in zeolite crystallization.

Choudhary M, Jain R, Rimer J Proc Natl Acad Sci U S A. 2020; 117(46):28632-28639.

PMID: 33127756 PMC: 7682586. DOI: 10.1073/pnas.2011806117.


References
1.
Kim Y, Ganesan K, Yang P, Kulak A, Borukhin S, Pechook S . An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat Mater. 2011; 10(11):890-6. DOI: 10.1038/nmat3103. View

2.
Warren N, Armes S . Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J Am Chem Soc. 2014; 136(29):10174-85. PMC: 4111214. DOI: 10.1021/ja502843f. View

3.
Warren N, Mykhaylyk O, Mahmood D, Ryan A, Armes S . RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J Am Chem Soc. 2014; 136(3):1023-33. PMC: 3920722. DOI: 10.1021/ja410593n. View

4.
Li C, Qi L . Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase. Angew Chem Int Ed Engl. 2008; 47(13):2388-93. DOI: 10.1002/anie.200705403. View

5.
Mable C, Gibson R, Prevost S, McKenzie B, Mykhaylyk O, Armes S . Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release. J Am Chem Soc. 2015; 137(51):16098-108. PMC: 4697924. DOI: 10.1021/jacs.5b10415. View