» Articles » PMID: 27028858

Tumor Suppressor Spred2 Interaction with LC3 Promotes Autophagosome Maturation and Induces Autophagy-dependent Cell Death

Overview
Journal Oncotarget
Specialty Oncology
Date 2016 Mar 31
PMID 27028858
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The tumor suppressor Spred2 (Sprouty-related EVH1 domain-2) induces cell death in a variety of cancers. However, the underlying mechanism remains to be elucidated. Here we show that Spred2 induces caspase-independent but autophagy-dependent cell death in human cervical carcinoma HeLa and lung cancer A549 cells. We demonstrate that ectopic Spred2 increased both the conversion of microtubule-associated protein 1 light chain 3 (LC3), GFP-LC3 puncta formation and p62/SQSTM1 degradation in A549 and HeLa cells. Conversely, knockdown of Spred2 in tumor cells inhibited upregulation of autophagosome maturation induced by the autophagy inducer Rapamycin, which could be reversed by the rescue Spred2. These data suggest that Spred2 promotes autophagy in tumor cells. Mechanistically, Spred2 co-localized and interacted with LC3 via the LC3-interacting region (LIR) motifs in its SPR domain. Mutations in the LIR motifs or deletion of the SPR domain impaired Spred2-mediated autophagosome maturation and tumor cell death, indicating that functional LIR is required for Spred2 to trigger tumor cell death. Additionally, Spred2 interacted and co-localized with p62/SQSTM1 through its SPR domain. Furthermore, the co-localization of Spred2, p62 and LAMP2 in HeLa cells indicates that p62 may be involved in Spred2-mediated autophagosome maturation. Inhibition of autophagy using the lysosomal inhibitor chloroquine, reduced Spred2-mediated HeLa cell death. Silencing the expression of autophagy-related genes ATG5, LC3 or p62 in HeLa and A549 cells gave similar results, suggesting that autophagy is required for Spred2-induced tumor cell death. Collectively, these data indicate that Spred2 induces tumor cell death in an autophagy-dependent manner.

Citing Articles

SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes.

Wang T, Gao T, Fujisawa M, Ohara T, Sakaguchi M, Yoshimura T Int J Mol Sci. 2024; 25(11).

PMID: 38892460 PMC: 11172722. DOI: 10.3390/ijms25116269.


RREB1 regulates neuronal proteostasis and the microtubule network.

Griffin E, Jucius T, Sim S, Harris B, Heinz S, Ackerman S Sci Adv. 2024; 10(2):eadh3929.

PMID: 38198538 PMC: 10780896. DOI: 10.1126/sciadv.adh3929.


Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development.

Jin X, You L, Qiao J, Han W, Pan H Autophagy. 2023; 20(2):242-258.

PMID: 37723664 PMC: 10813649. DOI: 10.1080/15548627.2023.2259214.


Cancer incidence and surveillance strategies in individuals with RASopathies.

Ney G, Gross A, Livinski A, Kratz C, Stewart D Am J Med Genet C Semin Med Genet. 2022; 190(4):530-540.

PMID: 36533693 PMC: 9825668. DOI: 10.1002/ajmg.c.32018.


SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway.

Fang K, Du S, Shen D, Xiong Z, Jiang K, Liang D iScience. 2022; 25(7):104618.

PMID: 35800779 PMC: 9253713. DOI: 10.1016/j.isci.2022.104618.


References
1.
Klionsky D, Abeliovich H, Agostinis P, Agrawal D, Aliev G, Askew D . Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008; 4(2):151-75. PMC: 2654259. DOI: 10.4161/auto.5338. View

2.
Yang Y, Zhang L, Yang B, Tian J, Zhang L . Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux. J Cell Mol Med. 2015; 19(5):1055-64. PMC: 4420607. DOI: 10.1111/jcmm.12498. View

3.
Haydn J, Hufnagel A, Grimm J, Maurus K, Schartl M, Meierjohann S . The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget. 2014; 5(13):5040-53. PMC: 4148120. DOI: 10.18632/oncotarget.2079. View

4.
Pankiv S, Lamark T, Bruun J, Overvatn A, Bjorkoy G, Johansen T . Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem. 2009; 285(8):5941-53. PMC: 2820819. DOI: 10.1074/jbc.M109.039925. View

5.
Eskelinen E . Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006; 27(5-6):495-502. DOI: 10.1016/j.mam.2006.08.005. View