» Articles » PMID: 27000893

Measurements of the Contact Force from Myenteric Contractions on a Solid Bolus

Overview
Journal J Robot Surg
Publisher Springer
Date 2016 Mar 23
PMID 27000893
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The development of robotic capsule endoscopes (RCEs) is one avenue presently investigated by multiple research groups to minimize invasiveness and enhance outcomes of enteroscopic procedures. Understanding the biomechanical response of the small bowel to RCEs is needed for design optimization of these devices. In previous work, the authors developed, characterized, and tested the migrating motor complex force sensor (MFS), a novel sensor for quantifying the contact forces per unit of axial length exerted by the myenteron on a solid bolus. This work is a continuation, in which the MFS is used to quantify the contractile strength in the small intestine proximal, middle, and distal regions of five live porcine models. The MFSs are surgically implanted in a generally anesthetized animal, and force data from 5 min of dwell time are analyzed. The mean myenteric contact force from all porcine models and locations within the bowel is 1.9 ± 1.0 N cm(-1). Examining the results based on the small bowel region shows a statistically significant strengthening trend in the contractile force from proximal to middle to distal with mean forces of 1.2 ± 0.5, 1.9 ± 0.9, and 2.3 ± 1.0 N cm(-1), respectively (mean ± one standard deviation). Quantification of the contact force against a solid bolus provides developers of RCEs with a valuable, experimentally derived parameter of the intraluminal environment.

Citing Articles

Pain-free oral delivery of biologic drugs using intestinal peristalsis-actuated microneedle robots.

Gao X, Li J, Li J, Zhang M, Xu J Sci Adv. 2024; 10(1):eadj7067.

PMID: 38181085 PMC: 10776013. DOI: 10.1126/sciadv.adj7067.


Freestanding region-responsive bilayer for functional packaging of ingestible devices.

Straker M, Levy J, Stine J, Borbash V, Beardslee L, Ghodssi R Microsyst Nanoeng. 2023; 9:61.

PMID: 37206701 PMC: 10188515. DOI: 10.1038/s41378-023-00536-w.


Capsule endoscopy of the future: What's on the horizon?.

Slawinski P, Obstein K, Valdastri P World J Gastroenterol. 2015; 21(37):10528-41.

PMID: 26457013 PMC: 4588075. DOI: 10.3748/wjg.v21.i37.10528.


Emerging Issues and Future Developments in Capsule Endoscopy.

Slawinski P, Obstein K, Valdastri P Tech Gastrointest Endosc. 2015; 17(1):40-46.

PMID: 26028956 PMC: 4445887. DOI: 10.1016/j.tgie.2015.02.006.

References
1.
Miftahof R, Fedotov E . Intestinal propulsion of a solid non-deformable bolus. J Theor Biol. 2005; 235(1):57-70. DOI: 10.1016/j.jtbi.2004.12.019. View

2.
Leighton J, Legnani P, Seidman E . Role of capsule endoscopy in inflammatory bowel disease: where we are and where we are going. Inflamm Bowel Dis. 2007; 13(3):331-7. DOI: 10.1002/ibd.20058. View

3.
Miftahof R, Akhmadeev N . Dynamics of intestinal propulsion. J Theor Biol. 2007; 246(2):377-93. DOI: 10.1016/j.jtbi.2007.01.006. View

4.
Terry B, Lyle A, Schoen J, Rentschler M . Preliminary mechanical characterization of the small bowel for in vivo robotic mobility. J Biomech Eng. 2011; 133(9):091010. PMC: 5413140. DOI: 10.1115/1.4005168. View

5.
Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C . Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest Endosc. 2008; 67(7):1153-8. DOI: 10.1016/j.gie.2007.11.052. View