» Articles » PMID: 26970255

Cortical Chemoarchitecture Shapes Macroscale Effective Functional Connectivity Patterns in Macaque Cerebral Cortex

Overview
Journal Hum Brain Mapp
Publisher Wiley
Specialty Neurology
Date 2016 Mar 13
PMID 26970255
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The mammalian cortex is a complex system of-at the microscale level-interconnected neurons and-at the macroscale level-interconnected areas, forming the infrastructure for local and global neural processing and information integration. While the effects of regional chemoarchitecture on local cortical activity are well known, the effect of local neurotransmitter receptor organization on the emergence of large scale region-to-region functional interactions remains poorly understood. Here, we examined reports of effective functional connectivity-as measured by the action of strychnine administration acting on the chemical balance of cortical areas-in relation to underlying regional variation in microscale neurotransmitter receptor density levels in the macaque cortex. Linking cortical variation in microscale receptor density levels to collated information on macroscale functional connectivity of the macaque cortex, we show macroscale patterns of effective corticocortical functional interactions-and in particular, the strength of connectivity of efferent macroscale pathways-to be related to the ratio of excitatory and inhibitory neurotransmitter receptor densities of cortical areas. Our findings provide evidence for the microscale chemoarchitecture of cortical areas to have a direct stimulating influence on the emergence of macroscale functional connectivity patterns in the mammalian brain. Hum Brain Mapp 37:1856-1865, 2016. © 2016 Wiley Periodicals, Inc.

Citing Articles

Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI.

Li G, Hsu L, Wu Y, Bozoki A, Shih Y, Yap P Commun Med (Lond). 2025; 5(1):17.

PMID: 39814858 PMC: 11735810. DOI: 10.1038/s43856-025-00736-7.


Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI.

Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni J, Ahveninen J bioRxiv. 2024; .

PMID: 38187540 PMC: 10769454. DOI: 10.1101/2023.12.23.573208.


Multiscale network neuroscience in neuro-oncology: How tumors, brain networks, and behavior connect across scales.

Maas D, Douw L Neurooncol Pract. 2023; 10(6):506-517.

PMID: 38026586 PMC: 10666814. DOI: 10.1093/nop/npad044.


Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain.

Deshpande G, Wang Y, Robinson J Brain Inform. 2022; 9(1):2.

PMID: 35038072 PMC: 8764001. DOI: 10.1186/s40708-021-00150-4.


Constructing the rodent stereotaxic brain atlas: a survey.

Feng Z, Li A, Gong H, Luo Q Sci China Life Sci. 2021; 65(1):93-106.

PMID: 33860452 DOI: 10.1007/s11427-020-1911-9.


References
1.
Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K . Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol. 2002; 12(6):587-99. DOI: 10.1016/s0924-977x(02)00108-6. View

2.
Beul S, Grant S, Hilgetag C . A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct. 2014; 220(6):3167-84. PMC: 4575693. DOI: 10.1007/s00429-014-0849-y. View

3.
Amunts K, von Cramon D . The anatomical segregation of the frontal cortex: what does it mean for function?. Cortex. 2006; 42(4):525-8. DOI: 10.1016/s0010-9452(08)70392-7. View

4.
Pascual-Leone A, Walsh V, Rothwell J . Transcranial magnetic stimulation in cognitive neuroscience--virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2001; 10(2):232-7. DOI: 10.1016/s0959-4388(00)00081-7. View

5.
Scholtens L, Schmidt R, de Reus M, van den Heuvel M . Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci. 2014; 34(36):12192-205. PMC: 6608464. DOI: 10.1523/JNEUROSCI.0752-14.2014. View