» Articles » PMID: 26947064

Global Analysis of Cellular Protein Flux Quantifies the Selectivity of Basal Autophagy

Overview
Journal Cell Rep
Publisher Cell Press
Date 2016 Mar 8
PMID 26947064
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

In eukaryotic cells, macroautophagy is a catabolic pathway implicated in the degradation of long-lived proteins and damaged organelles. Although it has been demonstrated that macroautophagy can selectively degrade specific targets, its contribution to the basal turnover of cellular proteins has not been quantified on proteome-wide scales. In this study, we created autophagy-deficient primary human fibroblasts and quantified the resulting changes in basal degradative flux by dynamic proteomics. Our results provide a global comparison of protein half-lives between wild-type and autophagy-deficient cells. The data indicate that in quiescent fibroblasts, macroautophagy contributes to the basal turnover of a substantial fraction of the proteome at varying levels. As contrasting examples, we demonstrate that the proteasome and CCT/TRiC chaperonin are robust substrates of basal autophagy, whereas the ribosome is largely protected under basal conditions. This selectivity may establish a proteostatic feedback mechanism that stabilizes the proteasome and CCT/TRiC when autophagy is inhibited.

Citing Articles

High-quality and robust protein quantification in large clinical/pharmaceutical cohorts with IonStar proteomics investigation.

Shen S, Wang X, Zhu X, Rasam S, Ma M, Huo S Nat Protoc. 2022; 18(3):700-731.

PMID: 36494494 PMC: 10673696. DOI: 10.1038/s41596-022-00780-w.


The uniformity and stability of cellular mass density in mammalian cell culture.

Liu X, Oh S, Kirschner M Front Cell Dev Biol. 2022; 10:1017499.

PMID: 36313562 PMC: 9597509. DOI: 10.3389/fcell.2022.1017499.


Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome.

Su H, Yang F, Fu R, Trinh B, Sun N, Liu J Nature. 2022; 610(7931):366-372.

PMID: 36198801 PMC: 9588640. DOI: 10.1038/s41586-022-05169-z.


Keeping the beat against time: Mitochondrial fitness in the aging heart.

Mendoza A, Karch J Front Aging. 2022; 3:951417.

PMID: 35958271 PMC: 9360554. DOI: 10.3389/fragi.2022.951417.


Defects in autophagy lead to selective in vivo changes in turnover of cytosolic and organelle proteins in Arabidopsis.

Li L, Lee C, Ding X, Qin Y, Wijerathna-Yapa A, Broda M Plant Cell. 2022; 34(10):3936-3960.

PMID: 35766863 PMC: 9516138. DOI: 10.1093/plcell/koac185.


References
1.
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I . Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005; 169(3):425-34. PMC: 2171928. DOI: 10.1083/jcb.200412022. View

2.
Claydon A, Beynon R . Proteome dynamics: revisiting turnover with a global perspective. Mol Cell Proteomics. 2012; 11(12):1551-65. PMC: 3518130. DOI: 10.1074/mcp.O112.022186. View

3.
Mathew R, Khor S, Hackett S, Rabinowitz J, Perlman D, White E . Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. 2014; 55(6):916-930. PMC: 4169768. DOI: 10.1016/j.molcel.2014.07.019. View

4.
Dengjel J, Hoyer-Hansen M, Nielsen M, Eisenberg T, Harder L, Schandorff S . Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics. 2012; 11(3):M111.014035. PMC: 3316729. DOI: 10.1074/mcp.M111.014035. View

5.
Ciechanover A . Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005; 6(1):79-87. DOI: 10.1038/nrm1552. View