» Articles » PMID: 23125033

Proteome Dynamics: Revisiting Turnover with a Global Perspective

Overview
Date 2012 Nov 6
PMID 23125033
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Although bulk protein turnover has been measured with the use of stable isotope labeled tracers for over half a century, it is only recently that the same approach has become applicable to the level of the proteome, permitting analysis of the turnover of many proteins instead of single proteins or an aggregated protein pool. The optimal experimental design for turnover studies is dependent on the nature of the biological system under study, which dictates the choice of precursor label, protein pool sampling strategy, and treatment of data. In this review we discuss different approaches and, in particular, explore how complexity in experimental design and data processing increases as we shift from unicellular to multicellular systems, in particular animals.

Citing Articles

Implications of tissue specific STING protein flux and abundance on inflammation and the development of targeted therapeutics.

Angel T, Chen Z, Moghieb A, Ng S, Beal A, Capriotti C PLoS One. 2025; 20(2):e0319216.

PMID: 39999142 PMC: 11856325. DOI: 10.1371/journal.pone.0319216.


Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain.

Zuniga N, Earls N, Denos A, Elison J, Jones B, Smith E PLoS Comput Biol. 2024; 20(12):e1012407.

PMID: 39666759 PMC: 11671012. DOI: 10.1371/journal.pcbi.1012407.


A Comprehensive and Robust Multiplex-DIA Workflow Profiles Protein Turnover Regulations Associated with Cisplatin Resistance.

Salovska B, Li W, Bernhardt O, Germain P, Gandhi T, Reiter L bioRxiv. 2024; .

PMID: 39554001 PMC: 11565775. DOI: 10.1101/2024.10.28.620709.


An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions.

Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro J bioRxiv. 2024; .

PMID: 39464138 PMC: 11507808. DOI: 10.1101/2024.10.15.618303.


Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain.

Zuniga N, Earls N, Denos A, Elison J, Jones B, Smith E bioRxiv. 2024; .

PMID: 39185235 PMC: 11343127. DOI: 10.1101/2024.08.13.607719.


References
1.
Brownridge P, Holman S, Gaskell S, Grant C, Harman V, Hubbard S . Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy. Proteomics. 2011; 11(15):2957-70. DOI: 10.1002/pmic.201100039. View

2.
Doherty M, Whitehead C, McCormack H, Gaskell S, Beynon R . Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics. 2005; 5(2):522-33. DOI: 10.1002/pmic.200400959. View

3.
Millward D, Garlick P . The energy cost of growth. Proc Nutr Soc. 1976; 35(3):339-49. DOI: 10.1079/pns19760054. View

4.
Beynon R, Pratt J . Metabolic labeling of proteins for proteomics. Mol Cell Proteomics. 2005; 4(7):857-72. DOI: 10.1074/mcp.R400010-MCP200. View

5.
Beynon R, Leyland D, Evershed R, EDWARDS R, Coburn S . Measurement of the turnover of glycogen phosphorylase by GC/MS using stable isotope derivatives of pyridoxine (vitamin B6). Biochem J. 1996; 317 ( Pt 2):613-9. PMC: 1217530. DOI: 10.1042/bj3170613. View