» Articles » PMID: 26941320

Multiplexed Protein-DNA Cross-linking: Scrunching in Transcription Start Site Selection

Overview
Journal Science
Specialty Science
Date 2016 Mar 5
PMID 26941320
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.

Citing Articles

Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.

Saecker R, Mueller A, Malone B, Chen J, Budell W, Dandey V Nat Struct Mol Biol. 2024; 31(11):1778-1788.

PMID: 38951624 PMC: 11821292. DOI: 10.1038/s41594-024-01349-9.


Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.

Saecker R, Mueller A, Malone B, Chen J, Budell W, Dandey V bioRxiv. 2024; .

PMID: 38559232 PMC: 10979975. DOI: 10.1101/2024.03.13.584744.


Quantitative analysis of transcription start site selection reveals control by DNA sequence, RNA polymerase II activity and NTP levels.

Zhu Y, Vvedenskaya I, Sze S, Nickels B, Kaplan C Nat Struct Mol Biol. 2024; 31(1):190-202.

PMID: 38177677 PMC: 10928753. DOI: 10.1038/s41594-023-01171-9.


Structural and mechanistic basis of σ-dependent transcriptional pausing.

Pukhrambam C, Molodtsov V, Kooshkbaghi M, Tareen A, Vu H, Skalenko K Proc Natl Acad Sci U S A. 2022; 119(23):e2201301119.

PMID: 35653571 PMC: 9191641. DOI: 10.1073/pnas.2201301119.


Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.

Plaskon D, Evensen C, Henderson K, Palatnik B, Ishikuri T, Wang H J Mol Biol. 2022; 434(13):167621.

PMID: 35533764 PMC: 9380721. DOI: 10.1016/j.jmb.2022.167621.


References
1.
Chin J, Martin A, King D, Wang L, Schultz P . Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A. 2002; 99(17):11020-4. PMC: 123203. DOI: 10.1073/pnas.172226299. View

2.
Fazal F, Meng C, Murakami K, Kornberg R, Block S . Real-time observation of the initiation of RNA polymerase II transcription. Nature. 2015; 525(7568):274-7. PMC: 4624315. DOI: 10.1038/nature14882. View

3.
Lewis D, Adhya S . Axiom of determining transcription start points by RNA polymerase in Escherichia coli. Mol Microbiol. 2004; 54(3):692-701. DOI: 10.1111/j.1365-2958.2004.04318.x. View

4.
Travers A . Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J Bacteriol. 1980; 141(2):973-6. PMC: 293725. DOI: 10.1128/jb.141.2.973-976.1980. View

5.
Liu J, Turnbough Jr C . Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli. J Bacteriol. 1994; 176(10):2938-45. PMC: 205450. DOI: 10.1128/jb.176.10.2938-2945.1994. View