» Articles » PMID: 26928935

The Molecular Basis of Polysaccharide Cleavage by Lytic Polysaccharide Monooxygenases

Abstract

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.

Citing Articles

Design of Plastic Binding Lytic Polysaccharide Monooxygenases via Modular Engineering.

Munzone A, Pujol M, Badjoudj M, Haon M, Grisel S, Magueresse A Chem Bio Eng. 2025; 1(10):863-875.

PMID: 39974575 PMC: 11835289. DOI: 10.1021/cbe.4c00125.


Theoretical study of the formation of HO by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant.

Wang Z, Fu X, Diao W, Wu Y, Rovira C, Wang B Chem Sci. 2025; 16(7):3173-3186.

PMID: 39829981 PMC: 11740911. DOI: 10.1039/d4sc06906d.


Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction.

Liu G, Qu Y Eng Microbiol. 2024; 1:100005.

PMID: 39629162 PMC: 11610957. DOI: 10.1016/j.engmic.2021.100005.


Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase.

Hall K, Mollatt M, Forsberg Z, Golten O, Schwaiger L, Ludwig R ACS Omega. 2024; 9(21):23040-23052.

PMID: 38826537 PMC: 11137697. DOI: 10.1021/acsomega.4c02666.


A novel AA14 LPMO from Talaromyces rugulosus with bifunctional cellulolytic/hemicellulolytic activity boosted cellulose hydrolysis.

Chen K, Zhao X, Zhang P, Long L, Ding S Biotechnol Biofuels Bioprod. 2024; 17(1):30.

PMID: 38395898 PMC: 10885436. DOI: 10.1186/s13068-024-02474-9.


References
1.
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S . Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels. 2015; 8:90. PMC: 4487207. DOI: 10.1186/s13068-015-0274-3. View

2.
Liu Y, Kati W, Chen C, Tripathi R, Molla A, Kohlbrenner W . Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal Biochem. 1999; 267(2):331-5. DOI: 10.1006/abio.1998.3014. View

3.
Pavlakos I, Arif T, Aliev A, Motherwell W, Tizzard G, Coles S . Noncovalent Lone Pair⋅⋅⋅(No-π!)-Heteroarene Interactions: The Janus-Faced Hydroxy Group. Angew Chem Int Ed Engl. 2015; 54(28):8169-74. DOI: 10.1002/anie.201502103. View

4.
Asensio J, Arda A, Canada F, Jimenez-Barbero J . Carbohydrate-aromatic interactions. Acc Chem Res. 2012; 46(4):946-54. DOI: 10.1021/ar300024d. View

5.
Lee J, Karlin K . Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation. Curr Opin Chem Biol. 2015; 25:184-93. PMC: 4385254. DOI: 10.1016/j.cbpa.2015.02.014. View