Niepmann M
Cancers (Basel). 2024; 16(13).
PMID: 39001354
PMC: 11240417.
DOI: 10.3390/cancers16132290.
Wang P, Han Y, Pan W, Du J, Zuo D, Ba Y
MedComm (2020). 2024; 5(4):e527.
PMID: 38576457
PMC: 10993348.
DOI: 10.1002/mco2.527.
Daverio Z, Balcerczyk A, Rautureau G, Panthu B
Cancers (Basel). 2023; 15(5).
PMID: 36900208
PMC: 10000466.
DOI: 10.3390/cancers15051417.
Mahgoub E, Taneera J, Sulaiman N, Saber-Ayad M
Front Med (Lausanne). 2022; 9:959348.
PMID: 36160153
PMC: 9490268.
DOI: 10.3389/fmed.2022.959348.
Ahn S, Kim H, Park Y
Front Immunol. 2022; 13:901555.
PMID: 36059477
PMC: 9433835.
DOI: 10.3389/fimmu.2022.901555.
From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies.
Schmidt C, Fisher-Wellman K, Neufer P
J Biol Chem. 2021; 297(4):101140.
PMID: 34461088
PMC: 8479256.
DOI: 10.1016/j.jbc.2021.101140.
Pyruvate Kinase M2 Supports Muscle Progenitor Cell Proliferation but Is Dispensable for Skeletal Muscle Regeneration after Injury.
Blum J, Gheller B, Benvie A, Field M, Panizza E, Vacanti N
J Nutr. 2021; 151(11):3313-3328.
PMID: 34383048
PMC: 8562082.
DOI: 10.1093/jn/nxab251.
Two transition states of the glycogen shunt and two steady states of gene expression support metabolic flexibility and the Warburg effect in cancer.
Rothman D, Shulman R
Neoplasia. 2021; 23(9):879-886.
PMID: 34303218
PMC: 8322124.
DOI: 10.1016/j.neo.2021.06.004.
Determining the quantitative relationship between glycolysis and GAPDH in cancer cells exhibiting the Warburg effect.
Zhu X, Jin C, Pan Q, Hu X
J Biol Chem. 2021; 296:100369.
PMID: 33545174
PMC: 7960551.
DOI: 10.1016/j.jbc.2021.100369.
Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells.
Jin C, Zhu X, Wu H, Wang Y, Hu X
J Biol Chem. 2020; 295(19):6425-6446.
PMID: 32217690
PMC: 7212654.
DOI: 10.1074/jbc.RA119.012312.
Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells.
Gerresheim G, Roeb E, Michel A, Niepmann M
Cells. 2019; 8(11).
PMID: 31717433
PMC: 6912740.
DOI: 10.3390/cells8111410.
Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment.
Rihan M, Nalla L, Dharavath A, Shard A, Kalia K, Khairnar A
Cancer Microenviron. 2019; 12(2-3):149-167.
PMID: 31183810
PMC: 6937361.
DOI: 10.1007/s12307-019-00226-0.
A critical review of the role of MPYK in the Warburg effect.
Harris R, Fenton A
Biochim Biophys Acta Rev Cancer. 2019; 1871(2):225-239.
PMID: 30708038
PMC: 6525063.
DOI: 10.1016/j.bbcan.2019.01.004.
Thermodynamic constraints on the regulation of metabolic fluxes.
Dai Z, Locasale J
J Biol Chem. 2018; 293(51):19725-19739.
PMID: 30361440
PMC: 6314121.
DOI: 10.1074/jbc.RA118.004372.
The multifaceted role of autophagy in cancer and the microenvironment.
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma V
Med Res Rev. 2018; 39(2):517-560.
PMID: 30302772
PMC: 6585651.
DOI: 10.1002/med.21531.
CARM1 suppresses serine synthesis by promoting PKM2 activity.
Abeywardana T, Oh M, Jiang L, Yang Y, Kong M, Song J
J Biol Chem. 2018; 293(39):15290-15303.
PMID: 30131339
PMC: 6166735.
DOI: 10.1074/jbc.RA118.004512.
Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect.
Wiese E, Hitosugi T
Front Cell Dev Biol. 2018; 6:79.
PMID: 30087897
PMC: 6066570.
DOI: 10.3389/fcell.2018.00079.
Differential but Complementary HIF1α and HIF2α Transcriptional Regulation.
Downes N, Laham-Karam N, Kaikkonen M, Yla-Herttuala S
Mol Ther. 2018; 26(7):1735-1745.
PMID: 29843956
PMC: 6036226.
DOI: 10.1016/j.ymthe.2018.05.004.
Central role of lactate and proton in cancer cell resistance to glucose deprivation and its clinical translation.
Hu X, Chao M, Wu H
Signal Transduct Target Ther. 2017; 2:16047.
PMID: 29263910
PMC: 5661620.
DOI: 10.1038/sigtrans.2016.47.
PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis.
Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C
Nat Cell Biol. 2017; 19(11):1358-1370.
PMID: 29058718
PMC: 5683091.
DOI: 10.1038/ncb3630.