» Articles » PMID: 26903882

Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity During Weight Regain After Weight Loss

Overview
Journal Front Physiol
Date 2016 Feb 24
PMID 26903882
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising animals compared to their energy gap-matched controls. Our interpretation of this data is that much of this lipid is being made by the liver and subsequently trafficked to adipose tissue storage. Together, these concerted effects may explain the beneficial effects of exercise on preventing weight regain following weight loss.

Citing Articles

The effect of garlic and stevia extract with aerobic exercise on hypothalamic leptin and ghrelin receptor mRNA expression and insulin resistance in obese rats.

Amirkhani Z, Gholi A, Asghari S, Hakak D, Pouryousef M, Yahyaei B BMC Complement Med Ther. 2025; 25(1):104.

PMID: 40087612 DOI: 10.1186/s12906-025-04756-7.


Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis.

Kesharwani D, Brown A J Cell Signal. 2024; 5(2):65-86.

PMID: 38826152 PMC: 11141760. DOI: 10.33696/signaling.5.114.


Single-nucleus transcriptomics of epicardial adipose tissue from female pigs reveals effects of exercise training on resident innate and adaptive immune cells.

Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha S Cell Commun Signal. 2024; 22(1):243.

PMID: 38671495 PMC: 11046969. DOI: 10.1186/s12964-024-01587-w.


Single-nucleus transcriptomics of epicardial adipose tissue from females reveals exercise control of innate and adaptive immune cells.

Ahmad I, Gupta S, Faulkner P, Mullens D, Thomas M, Sytha S bioRxiv. 2023; .

PMID: 37961306 PMC: 10635101. DOI: 10.1101/2023.11.02.565385.


Exercise Improves Redox Homeostasis and Mitochondrial Function in White Adipose Tissue.

Matta L, de Faria C, De Oliveira D, Andrade I, Correia Lima-Junior N, Gregorio B Antioxidants (Basel). 2022; 11(9).

PMID: 36139762 PMC: 9495527. DOI: 10.3390/antiox11091689.


References
1.
Steig A, Jackman M, Giles E, Higgins J, Johnson G, Mahan C . Exercise reduces appetite and traffics excess nutrients away from energetically efficient pathways of lipid deposition during the early stages of weight regain. Am J Physiol Regul Integr Comp Physiol. 2011; 301(3):R656-67. PMC: 3174759. DOI: 10.1152/ajpregu.00212.2011. View

2.
Mariman E, Wang P . Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci. 2010; 67(8):1277-92. PMC: 2839497. DOI: 10.1007/s00018-010-0263-4. View

3.
Hill J . Body weight regulation in obese and obese-reduced rats. Int J Obes. 1990; 14 Suppl 1:31-45; discussion 45-7. View

4.
Milewicz A, Tworowska U, Demissie M . Menopausal obesity--myth or fact?. Climacteric. 2002; 4(4):273-83. View

5.
MacLean P, Higgins J, Wyatt H, Melanson E, Johnson G, Jackman M . Regular exercise attenuates the metabolic drive to regain weight after long-term weight loss. Am J Physiol Regul Integr Comp Physiol. 2009; 297(3):R793-802. PMC: 2739786. DOI: 10.1152/ajpregu.00192.2009. View