Gu A, Li J, Li M, Liu Y
MedComm (2020). 2025; 6(2):e70059.
PMID: 39830019
PMC: 11742426.
DOI: 10.1002/mco2.70059.
Trentini F, Agnetti V, Manini M, Giovannetti E, Garajova I
Front Pharmacol. 2024; 15:1499414.
PMID: 39723256
PMC: 11668609.
DOI: 10.3389/fphar.2024.1499414.
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F
Front Mol Biosci. 2024; 11:1440670.
PMID: 39600303
PMC: 11589788.
DOI: 10.3389/fmolb.2024.1440670.
Zhou R, Tang X, Wang Y
Nat Rev Cancer. 2024; 24(12):850-866.
PMID: 39433978
DOI: 10.1038/s41568-024-00754-y.
Sommer B, Dhawan D, Ruple A, Ramos-Vara J, Hahn N, Utturkar S
Bladder Cancer. 2024; 7(3):317-333.
PMID: 38993617
PMC: 11181872.
DOI: 10.3233/BLC-201523.
OBSERVE: guidelines for the refinement of rodent cancer models.
De Vleeschauwer S, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne A
Nat Protoc. 2024; 19(9):2571-2596.
PMID: 38992214
DOI: 10.1038/s41596-024-00998-w.
Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data.
Zohud O, Lone I, Nashef A, Iraqi F
Animal Model Exp Med. 2023; 6(6):537-558.
PMID: 38129938
PMC: 10757216.
DOI: 10.1002/ame2.12367.
Unraveling the Mysteries of Perineural Invasion in Benign and Malignant Conditions.
Bahmad H, Gogola S, Rejzer M, Stoyanov K, Gomez A, Valencia A
Curr Oncol. 2023; 30(10):8948-8972.
PMID: 37887547
PMC: 10605475.
DOI: 10.3390/curroncol30100647.
Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance.
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M
Cell Oncol (Dordr). 2023; 47(1):1-17.
PMID: 37610689
PMC: 10899381.
DOI: 10.1007/s13402-023-00857-y.
Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer.
Liang F, Xu H, Cheng H, Zhao Y, Zhang J
Cancer Gene Ther. 2023; 30(11):1443-1455.
PMID: 37537209
DOI: 10.1038/s41417-023-00652-9.
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials.
Tutty M, Movia D, Prina-Mello A
Drug Deliv Transl Res. 2022; 12(9):2048-2074.
PMID: 35507131
PMC: 9066991.
DOI: 10.1007/s13346-022-01147-0.
Mouse Models to Study Secondary Cancer Prevention.
Li L, Chandra V, McAllister F, Zhang Y
Methods Mol Biol. 2022; 2435:215-223.
PMID: 34993950
PMC: 10947581.
DOI: 10.1007/978-1-0716-2014-4_16.
Porcine pancreatic ductal epithelial cells transformed with KRAS and SV40T are tumorigenic.
Bailey K, Cartwright S, Patel N, Remmers N, Lazenby A, Hollingsworth M
Sci Rep. 2021; 11(1):13436.
PMID: 34183736
PMC: 8238942.
DOI: 10.1038/s41598-021-92852-2.
Systems genetics analysis of oral squamous cell carcinoma susceptibility using the mouse model: current position and new perspective.
Nashef A, Qahaz N, Abu El-Naaj I, Iraqi F
Mamm Genome. 2021; 32(5):323-331.
PMID: 34155540
DOI: 10.1007/s00335-021-09885-1.
Precision and Immunoprevention Strategies for Tobacco-Related Head and Neck Cancer Chemoprevention.
Centuori S, Caulin C, Bauman J
Curr Treat Options Oncol. 2021; 22(6):52.
PMID: 33991232
PMC: 8122210.
DOI: 10.1007/s11864-021-00848-x.
Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics.
Ozturk M, Montero M, Wang L, Chaible L, Jechlinger M, Prevedel R
Commun Biol. 2021; 4(1):556.
PMID: 33976362
PMC: 8113483.
DOI: 10.1038/s42003-021-02063-8.
NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation.
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk R, Milner T
Cancer Discov. 2021; 11(9):2316-2333.
PMID: 33893149
PMC: 7611624.
DOI: 10.1158/2159-8290.CD-20-1765.
Grand Challenges in Infectious Diseases: Are We Prepared for Worst-Case Scenarios?.
Cloeckaert A, Kuchler K
Front Microbiol. 2020; 11:613383.
PMID: 33329504
PMC: 7734098.
DOI: 10.3389/fmicb.2020.613383.
Lifestyle and Environmental Approaches for the Primary Prevention of Hepatocellular Carcinoma.
Simon T, Chan A
Clin Liver Dis. 2020; 24(4):549-576.
PMID: 33012445
PMC: 7536356.
DOI: 10.1016/j.cld.2020.06.002.
MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway.
Li J, Xu J, Li L, Ianni A, Kumari P, Liu S
Theranostics. 2020; 10(14):6467-6482.
PMID: 32483464
PMC: 7255015.
DOI: 10.7150/thno.43865.