» Articles » PMID: 26889498

Interactive Whole-Heart Segmentation in Congenital Heart Disease

Overview
Publisher Springer
Date 2016 Feb 19
PMID 26889498
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

We present an interactive algorithm to segment the heart chambers and epicardial surfaces, including the great vessel walls, in pediatric cardiac MRI of congenital heart disease. Accurate whole-heart segmentation is necessary to create patient-specific 3D heart models for surgical planning in the presence of complex heart defects. Anatomical variability due to congenital defects precludes fully automatic atlas-based segmentation. Our interactive segmentation method exploits expert segmentations of a small set of short-axis slice regions to automatically delineate the remaining volume using patch-based segmentation. We also investigate the potential of active learning to automatically solicit user input in areas where segmentation error is likely to be high. Validation is performed on four subjects with double outlet right ventricle, a severe congenital heart defect. We show that strategies asking the user to manually segment regions of interest within short-axis slices yield higher accuracy with less user input than those querying entire short-axis slices.

Citing Articles

Accurately assessing congenital heart disease using artificial intelligence.

Khan K, Ullah F, Syed I, Ali H PeerJ Comput Sci. 2024; 10:e2535.

PMID: 39650370 PMC: 11623015. DOI: 10.7717/peerj-cs.2535.


Ensembling Low Precision Models for Binary Biomedical Image Segmentation.

Ma T, Zhang H, Ong H, Vora A, Nguyen T, Gupta A IEEE Winter Conf Appl Comput Vis. 2024; 2021:325-334.

PMID: 38978709 PMC: 11228952. DOI: 10.1109/wacv48630.2021.00037.


HVSMR-2.0: A 3D cardiovascular MR dataset for whole-heart segmentation in congenital heart disease.

Pace D, Contreras H, Romanowicz J, Ghelani S, Rahaman I, Zhang Y Sci Data. 2024; 11(1):721.

PMID: 38956063 PMC: 11219801. DOI: 10.1038/s41597-024-03469-9.


Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.

Arasteh S, Romanowicz J, Pace D, Golland P, Powell A, Maier A Front Cardiovasc Med. 2023; 10:1167500.

PMID: 37904806 PMC: 10613522. DOI: 10.3389/fcvm.2023.1167500.


Comparative Study of 2D-Cine and 3D-wh Volumetry: Revealing Systemic Error of 2D-Cine Volumetry.

Alkassar M, Engelhardt S, Abu-Tair T, Ojeda E, Treffer P, Weyand M Diagnostics (Basel). 2023; 13(20).

PMID: 37891983 PMC: 10605840. DOI: 10.3390/diagnostics13203162.


References
1.
Rousseau F, Habas P, Studholme C . A supervised patch-based approach for human brain labeling. IEEE Trans Med Imaging. 2011; 30(10):1852-62. PMC: 3318921. DOI: 10.1109/TMI.2011.2156806. View

2.
Valverde I, Gomez G, Gonzalez A, Suarez-Mejias C, Adsuar A, Coserria J . Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young. 2014; 25(4):698-704. DOI: 10.1017/S1047951114000742. View

3.
Coupe P, Manjon J, Fonov V, Pruessner J, Robles M, Collins D . Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage. 2010; 54(2):940-54. DOI: 10.1016/j.neuroimage.2010.09.018. View

4.
Veeraraghavan H, Miller J . ACTIVE LEARNING GUIDED INTERACTIONS FOR CONSISTENT IMAGE SEGMENTATION WITH REDUCED USER INTERACTIONS. Proc IEEE Int Symp Biomed Imaging. 2019; 2011:1645-1648. PMC: 6420318. DOI: 10.1109/ISBI.2011.5872719. View

5.
Schmauss D, Haeberle S, Hagl C, Sodian R . Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg. 2014; 47(6):1044-52. DOI: 10.1093/ejcts/ezu310. View