» Articles » PMID: 21606021

A Supervised Patch-based Approach for Human Brain Labeling

Overview
Date 2011 May 25
PMID 21606021
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

We propose in this work a patch-based image labeling method relying on a label propagation framework. Based on image intensity similarities between the input image and an anatomy textbook, an original strategy which does not require any nonrigid registration is presented. Following recent developments in nonlocal image denoising, the similarity between images is represented by a weighted graph computed from an intensity-based distance between patches. Experiments on simulated and in vivo magnetic resonance images show that the proposed method is very successful in providing automated human brain labeling.

Citing Articles

Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study.

Inuggi A, Marenco G, Bode J, Bovio A, Versaggi S, Favilla L Eur Arch Psychiatry Clin Neurosci. 2024; .

PMID: 39741206 DOI: 10.1007/s00406-024-01952-3.


Dense Multi-Scale Graph Convolutional Network for Knee Joint Cartilage Segmentation.

Chadoulos C, Tsaopoulos D, Symeonidis A, Moustakidis S, Theocharis J Bioengineering (Basel). 2024; 11(3).

PMID: 38534552 PMC: 10968228. DOI: 10.3390/bioengineering11030278.


Semi-automatic muscle segmentation in MR images using deep registration-based label propagation.

Decaux N, Conze P, Ropars J, He X, Sheehan F, Pons C Pattern Recognit. 2023; 140.

PMID: 37383565 PMC: 10299801. DOI: 10.1016/j.patcog.2023.109529.


Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation.

Deng Y, Wen Y, Qian L, Anton E, Xu H, Pushparajah K Stat Atlases Comput Models Heart. 2023; 13593:26-35.

PMID: 37133264 PMC: 10148962. DOI: 10.1007/978-3-031-23443-9_3.


High-resolution atlasing and segmentation of the subcortex: Review and perspective on challenges and opportunities created by machine learning.

Casamitjana A, Iglesias J Neuroimage. 2022; 263:119616.

PMID: 36084858 PMC: 11534291. DOI: 10.1016/j.neuroimage.2022.119616.


References
1.
Sabuncu M, Yeo B, Van Leemput K, Fischl B, Golland P . A generative model for image segmentation based on label fusion. IEEE Trans Med Imaging. 2010; 29(10):1714-29. PMC: 3268159. DOI: 10.1109/TMI.2010.2050897. View

2.
Collins D, Pruessner J . Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage. 2010; 52(4):1355-66. DOI: 10.1016/j.neuroimage.2010.04.193. View

3.
Aubert-Broche B, Evans A, Collins L . A new improved version of the realistic digital brain phantom. Neuroimage. 2006; 32(1):138-45. DOI: 10.1016/j.neuroimage.2006.03.052. View

4.
Khan A, Chung M, Beg M . Robust atlas-based brain segmentation using multi-structure confidence-weighted registration. Med Image Comput Comput Assist Interv. 2010; 12(Pt 2):549-57. DOI: 10.1007/978-3-642-04271-3_67. View

5.
Miller M, Christensen G, Amit Y, Grenander U . Mathematical textbook of deformable neuroanatomies. Proc Natl Acad Sci U S A. 1993; 90(24):11944-8. PMC: 48101. DOI: 10.1073/pnas.90.24.11944. View