» Articles » PMID: 26884467

Ecophysiology, Secondary Pigments and Ultrastructure of Chlainomonas Sp. (Chlorophyta) from the European Alps Compared with Chlamydomonas Nivalis Forming Red Snow

Overview
Date 2016 Feb 18
PMID 26884467
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze-thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonassp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores ofChlainomonassp. show clear differences fromChlamydomonas nivalisin cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While inChlainomonassp. astaxanthin is mainly esterified with two fatty acids and is more apolar, inChamydomonas nivalis, in contrast, less apolar monoesters prevail.

Citing Articles

Harmful algal blooms in inland waters.

Feng L, Wang Y, Hou X, Qin B, Kuster T, Qu F Nat Rev Earth Environ. 2025; 5(9):631-644.

PMID: 39995947 PMC: 11849997. DOI: 10.1038/s43017-024-00578-2.


Snowmelt duration controls red algal blooms in the snow of the European Alps.

Roussel L, Dumont M, Gascoin S, Monteiro D, Bavay M, Nabat P Proc Natl Acad Sci U S A. 2024; 121(41):e2400362121.

PMID: 39312681 PMC: 11474047. DOI: 10.1073/pnas.2400362121.


Patchy and Pink: Dynamics of a Chlainomonas sp. (Chlamydomonadales, chlorophyta) algal bloom on Bagley Lake, North Cascades, WA.

van Hees D, Hanneman C, Paradis S, Camara A, Matsumoto M, Hamilton T FEMS Microbiol Ecol. 2023; 99(11).

PMID: 37675994 PMC: 10580270. DOI: 10.1093/femsec/fiad106.


Diversity and Distribution of Carotenogenic Algae in Europe: A Review.

Chekanov K Mar Drugs. 2023; 21(2).

PMID: 36827149 PMC: 9958874. DOI: 10.3390/md21020108.


Pilot-Scale Cultivation of the Snow Alga in a Photobioreactor.

Schoeters F, Spit J, Azizah R, Van Miert S Front Bioeng Biotechnol. 2022; 10:896261.

PMID: 35757813 PMC: 9218667. DOI: 10.3389/fbioe.2022.896261.


References
1.
Novis P, Hoham R, Beer T, Dawson M . TWO SNOW SPECIES OF THE QUADRIFLAGELLATE GREEN ALGA CHLAINOMONAS (CHLOROPHYTA, VOLVOCALES): ULTRASTRUCTURE AND PHYLOGENETIC POSITION WITHIN THE CHLOROMONAS CLADE(1). J Phycol. 2016; 44(4):1001-12. DOI: 10.1111/j.1529-8817.2008.00545.x. View

2.
Verbruggen H, Ashworth M, LoDuca S, Vlaeminck C, Cocquyt E, Sauvage T . A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol Phylogenet Evol. 2009; 50(3):642-53. DOI: 10.1016/j.ympev.2008.12.018. View

3.
Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar P . Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2014; 184:363-372. DOI: 10.1016/j.biortech.2014.11.040. View

4.
Lukes M, Prochazkova L, Shmidt V, Nedbalova L, Kaftan D . Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol Ecol. 2014; 89(2):303-15. DOI: 10.1111/1574-6941.12299. View

5.
Holzinger A, Roleda M, Lutz C . The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009; 40(8):831-8. DOI: 10.1016/j.micron.2009.06.008. View