» Articles » PMID: 26883693

Solithromycin Pharmacokinetics in Plasma and Dried Blood Spots and Safety in Adolescents

Abstract

We assessed the pharmacokinetics and safety of solithromycin, a fluoroketolide antibiotic, in a phase 1, open-label, multicenter study of 13 adolescents with suspected or confirmed bacterial infections. On days 3 to 5, the mean (standard deviation) maximum plasma concentration and area under the concentration versus time curve from 0 to 24 h were 0.74 μg/ml (0.61 μg/ml) and 9.28 μg · h/ml (6.30 μg · h/ml), respectively. The exposure and safety in this small cohort of adolescents were comparable to those for adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01966055.).

Citing Articles

Leveraging Physiologically Based Pharmacokinetic Modeling and Experimental Data to Guide Dosing Modification of CYP3A-Mediated Drug-Drug Interactions in the Pediatric Population.

Salerno S, Carreno F, Edginton A, Cohen-Wolkowiez M, Gonzalez D Drug Metab Dispos. 2021; 49(9):844-855.

PMID: 34154994 PMC: 10441624. DOI: 10.1124/dmd.120.000318.


A Dried Blood Spot Analysis for Solithromycin in Adolescents, Children, and Infants: A Short Communication.

Beechinor R, Cohen-Wolkowiez M, Jasion T, Hornik C, Lang J, Hernandez R Ther Drug Monit. 2019; 41(6):761-765.

PMID: 31318840 PMC: 6856424. DOI: 10.1097/FTD.0000000000000670.


Population Pharmacokinetics and Safety of Solithromycin following Intravenous and Oral Administration in Infants, Children, and Adolescents.

Gonzalez D, James L, Al-Uzri A, Bosheva M, Adler-Shohet F, Mendley S Antimicrob Agents Chemother. 2018; 62(8).

PMID: 29891609 PMC: 6105834. DOI: 10.1128/AAC.00692-18.


Comparative Analysis of Ampicillin Plasma and Dried Blood Spot Pharmacokinetics in Neonates.

Le J, Poindexter B, Sullivan J, Laughon M, Delmore P, Blackford M Ther Drug Monit. 2017; 40(1):103-108.

PMID: 29271816 PMC: 5764797. DOI: 10.1097/FTD.0000000000000466.


Spotlight on solithromycin in the treatment of community-acquired bacterial pneumonia: design, development, and potential place in therapy.

Donald B, Surani S, Deol H, Mbadugha U, Udeani G Drug Des Devel Ther. 2017; 11:3559-3566.

PMID: 29263651 PMC: 5732564. DOI: 10.2147/DDDT.S119545.


References
1.
Yasuda K, Ranade A, Venkataramanan R, Strom S, Chupka J, Ekins S . A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos. 2008; 36(8):1689-97. PMC: 4664062. DOI: 10.1124/dmd.108.020701. View

2.
Rey E, Treluyer J, Pons G . Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998; 35(4):313-29. DOI: 10.2165/00003088-199835040-00004. View

3.
Parsons T, Marzinke M, Hoang T, Bliven-Sizemore E, Weiner M, Mac Kenzie W . Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis. Antimicrob Agents Chemother. 2014; 58(11):6747-57. PMC: 4249427. DOI: 10.1128/AAC.03607-14. View

4.
Gonzalez D, Melloni C, Poindexter B, Yogev R, Atz A, Sullivan J . Simultaneous determination of trimethoprim and sulfamethoxazole in dried plasma and urine spots. Bioanalysis. 2015; 7(9):1137-49. PMC: 4455038. DOI: 10.4155/bio.15.38. View

5.
Han K, Capitano B, Bies R, Potoski B, Husain S, Gilbert S . Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob Agents Chemother. 2010; 54(10):4424-31. PMC: 2944566. DOI: 10.1128/AAC.00504-10. View