» Articles » PMID: 26879554

Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics

Overview
Journal J Phys Chem B
Specialty Chemistry
Date 2016 Feb 17
PMID 26879554
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Protonation by carbonic acid H2CO3 of the strong base methylamine CH3NH2 in a neutral contact pair in aqueous solution is followed via Car-Parrinello molecular dynamics simulations. Proton transfer (PT) occurs to form an aqueous solvent-stabilized contact ion pair within 100 fs, a fast time scale associated with the compression of the acid-base hydrogen-bond (H-bond), a key reaction coordinate. This rapid barrierless PT is consistent with the carbonic acid-protonated base pKa difference that considerably favors the PT, and supports the view of intact carbonic acid as potentially important proton donor in assorted biological and environmental contexts. The charge redistribution within the H-bonded complex during PT supports a Mulliken picture of charge transfer from the nitrogen base to carbonic acid without altering the transferring hydrogen's charge from approximately midway between that of a hydrogen atom and that of a proton.

Citing Articles

Broadband fluorescence reveals mechanistic differences in excited-state proton transfer to protic and aprotic solvents.

Verma P, Rosspeintner A, Dereka B, Vauthey E, Kumpulainen T Chem Sci. 2021; 11(30):7963-7971.

PMID: 34094165 PMC: 8163259. DOI: 10.1039/d0sc03316b.


The Role of Carbonate in Catalytic Oxidations.

Patra S, Mizrahi A, Meyerstein D Acc Chem Res. 2020; 53(10):2189-2200.

PMID: 32975405 PMC: 7584338. DOI: 10.1021/acs.accounts.0c00344.


Intact carbonic acid is a viable protonating agent for biological bases.

Aminov D, Pines D, Kiefer P, Daschakraborty S, Hynes J, Pines E Proc Natl Acad Sci U S A. 2019; 116(42):20837-20843.

PMID: 31570591 PMC: 6800339. DOI: 10.1073/pnas.1909498116.


C Fullerene Cage as a Novel Catalyst for Efficient Proton Transfer Reactions between Small Molecules: A Theoretical study.

Varadwaj P, Varadwaj A, Marques H Sci Rep. 2019; 9(1):10650.

PMID: 31337790 PMC: 6650427. DOI: 10.1038/s41598-019-46725-4.


Characterization of a trans-trans Carbonic Acid-Fluoride Complex by Infrared Action Spectroscopy in Helium Nanodroplets.

Thomas D, Mucha E, Lettow M, Meijer G, Rossi M, von Helden G J Am Chem Soc. 2019; 141(14):5815-5823.

PMID: 30883095 PMC: 6727381. DOI: 10.1021/jacs.8b13542.


References
1.
Loerting T, Bernard J . Aqueous carbonic acid (H2CO3). Chemphyschem. 2010; 11(11):2305-9. DOI: 10.1002/cphc.201000220. View

2.
Wang S, Bianco R, Hynes J . Depth-dependent dissociation of nitric acid at an aqueous surface: Car-Parrinello molecular dynamics. J Phys Chem A. 2009; 113(7):1295-307. DOI: 10.1021/jp808533y. View

3.
Nguyen M, Matus M, Jackson V, Vu T, Rustad J, Dixon D . Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. J Phys Chem A. 2008; 112(41):10386-98. DOI: 10.1021/jp804715j. View

4.
Zimmerli U, Parrinello M, Koumoutsakos P . Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys. 2004; 120(6):2693-9. DOI: 10.1063/1.1637034. View

5.
Galib M, Hanna G . Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study. J Phys Chem B. 2011; 115(50):15024-35. DOI: 10.1021/jp207752m. View