» Articles » PMID: 26872971

Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2016 Feb 14
PMID 26872971
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.

Citing Articles

Non-autophagic Golgi-LC3 lipidation facilitates TFE3 stress response against Golgi dysfunction.

Kang J, Li C, Kim N, Baek J, Jung Y EMBO J. 2024; 43(21):5085-5113.

PMID: 39284911 PMC: 11535212. DOI: 10.1038/s44318-024-00233-y.


Multiple roles for actin in secretory and endocytic pathways.

Chakrabarti R, Lee M, Higgs H Curr Biol. 2021; 31(10):R603-R618.

PMID: 34033793 PMC: 9759210. DOI: 10.1016/j.cub.2021.03.038.


Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma.

Couto-Vieira J, Nicolau-Neto P, Costa E, Figueira F, de Almeida Simao T, Okorokova-Facanha A EBioMedicine. 2020; 51:102581.

PMID: 31901859 PMC: 6948166. DOI: 10.1016/j.ebiom.2019.11.042.


V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis.

Duan X, Yang S, Zhang L, Yang T Theranostics. 2018; 8(19):5379-5399.

PMID: 30555553 PMC: 6276090. DOI: 10.7150/thno.28391.


F-actin reorganization by V-ATPase inhibition in prostate cancer.

Licon-Munoz Y, Michel V, Fordyce C, Parra K Biol Open. 2017; 6(11):1734-1744.

PMID: 29038303 PMC: 5703614. DOI: 10.1242/bio.028837.

References
1.
Rubenstein E, Schmidt M . The glucose signal and metabolic p[H+]lux. EMBO J. 2010; 29(15):2473-4. PMC: 2928691. DOI: 10.1038/emboj.2010.161. View

2.
Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot F . Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One. 2008; 3(7):e2758. PMC: 2447177. DOI: 10.1371/journal.pone.0002758. View

3.
Gutierrez-Martinez E, Fernandez-Ulibarri I, Lazaro-Dieguez F, Johannes L, Pyne S, Sarri E . Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci. 2013; 126(Pt 12):2641-55. DOI: 10.1242/jcs.117705. View

4.
Kornak U, Reynders E, Dimopoulou A, van Reeuwijk J, Fischer B, Rajab A . Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet. 2007; 40(1):32-4. DOI: 10.1038/ng.2007.45. View

5.
Balch W, Dunphy W, Braell W, Rothman J . Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984; 39(2 Pt 1):405-16. DOI: 10.1016/0092-8674(84)90019-9. View