Xu W, Zheng C, Fu C, Gong X, Fang Q, Yin Z
Front Public Health. 2025; 12:1474855.
PMID: 39744358
PMC: 11688476.
DOI: 10.3389/fpubh.2024.1474855.
Su F, Liu Y, Ling F, Zhang R, Wang Z, Sun J
Viruses. 2024; 16(1).
PMID: 38275955
PMC: 10818760.
DOI: 10.3390/v16010145.
Gao Q, Wang S, Wang Q, Cao G, Fang C, Zhan B
Front Public Health. 2024; 11:1333178.
PMID: 38274546
PMC: 10808376.
DOI: 10.3389/fpubh.2023.1333178.
Rahman M, Chowdhury A, Amrin M
PLOS Glob Public Health. 2023; 2(5):e0000495.
PMID: 36962227
PMC: 10021465.
DOI: 10.1371/journal.pgph.0000495.
Wei X, Li X, Song S, Wen X, Jin T, Zhao C
Arch Public Health. 2022; 80(1):218.
PMID: 36182906
PMC: 9526533.
DOI: 10.1186/s13690-022-00973-5.
Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China.
Wu Z, Chen Z, Long S, Wu A, Wang H
BMC Infect Dis. 2022; 22(1):641.
PMID: 35871653
PMC: 9308895.
DOI: 10.1186/s12879-022-07620-y.
Application of the ARIMA Model in Forecasting the Incidence of Tuberculosis in Anhui During COVID-19 Pandemic from 2021 to 2022.
Chen S, Wang X, Zhao J, Zhang Y, Kan X
Infect Drug Resist. 2022; 15:3503-3512.
PMID: 35813085
PMC: 9268244.
DOI: 10.2147/IDR.S367528.
Estimating the Long-Term Epidemiological Trends and Seasonality of Hemorrhagic Fever with Renal Syndrome in China.
Xiao Y, Li Y, Li Y, Yu C, Bai Y, Wang L
Infect Drug Resist. 2021; 14:3849-3862.
PMID: 34584428
PMC: 8464322.
DOI: 10.2147/IDR.S325787.
Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach.
Ye G, Alim M, Guan P, Huang D, Zhou B, Wu W
PLoS One. 2021; 16(3):e0248597.
PMID: 33725011
PMC: 7963064.
DOI: 10.1371/journal.pone.0248597.
Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: a time-series study.
Alim M, Ye G, Guan P, Huang D, Zhou B, Wu W
BMJ Open. 2020; 10(12):e039676.
PMID: 33293308
PMC: 7722837.
DOI: 10.1136/bmjopen-2020-039676.
Exploring the Dynamics of Hemorrhagic Fever with Renal Syndrome Incidence in East China Through Seasonal Autoregressive Integrated Moving Average Models.
Shi F, Yu C, Yang L, Li F, Lun J, Gao W
Infect Drug Resist. 2020; 13:2465-2475.
PMID: 32801786
PMC: 7383097.
DOI: 10.2147/IDR.S250038.
Epidemiological and time series analysis of haemorrhagic fever with renal syndrome from 2004 to 2017 in Shandong Province, China.
Zhang C, Fu X, Zhang Y, Nie C, Li L, Cao H
Sci Rep. 2019; 9(1):14644.
PMID: 31601887
PMC: 6787217.
DOI: 10.1038/s41598-019-50878-7.
Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses.
Liu Q, Li Z, Ji Y, Martinez L, Zia U, Javaid A
Infect Drug Resist. 2019; 12:2311-2322.
PMID: 31440067
PMC: 6666376.
DOI: 10.2147/IDR.S207809.
Analyzing hemorrhagic fever with renal syndrome in Hubei Province, China: a space-time cube-based approach.
Zhao Y, Ge L, Liu J, Liu H, Yu L, Wang N
J Int Med Res. 2019; 47(7):3371-3388.
PMID: 31144552
PMC: 6683916.
DOI: 10.1177/0300060519850734.
Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
Li Z, Wang Z, Song H, Liu Q, He B, Shi P
Infect Drug Resist. 2019; 12:1011-1020.
PMID: 31118707
PMC: 6501557.
DOI: 10.2147/IDR.S190418.
The characteristics of current natural foci of hemorrhagic fever with renal syndrome in Shandong Province, China, 2012-2015.
Zheng Z, Wang P, Wang Z, Zhang D, Wang X, Zuo S
PLoS Negl Trop Dis. 2019; 13(5):e0007148.
PMID: 31107874
PMC: 6544330.
DOI: 10.1371/journal.pntd.0007148.
A new Seasonal Difference Space-Time Autoregressive Integrated Moving Average (SD-STARIMA) model and spatiotemporal trend prediction analysis for Hemorrhagic Fever with Renal Syndrome (HFRS).
Zhao Y, Ge L, Zhou Y, Sun Z, Zheng E, Wang X
PLoS One. 2018; 13(11):e0207518.
PMID: 30475830
PMC: 6261020.
DOI: 10.1371/journal.pone.0207518.
Spatial-temporal characteristics and the epidemiology of haemorrhagic fever with renal syndrome from 2007 to 2016 in Zhejiang Province, China.
Wu H, Wang X, Xue M, Wu C, Lu Q, Ding Z
Sci Rep. 2018; 8(1):10244.
PMID: 29980717
PMC: 6035233.
DOI: 10.1038/s41598-018-28610-8.
Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics.
Zhang L, Wang L, Zheng Y, Wang K, Zhang X, Zheng Y
Int J Environ Res Public Health. 2017; 14(3).
PMID: 28273856
PMC: 5369098.
DOI: 10.3390/ijerph14030262.