Chen X, Moraga P
BMC Public Health. 2025; 25(1):973.
PMID: 40075398
PMC: 11900637.
DOI: 10.1186/s12889-025-22106-7.
Xu C, Xu J, Wang L
BMC Public Health. 2024; 24(1):1451.
PMID: 38816722
PMC: 11141019.
DOI: 10.1186/s12889-024-18869-0.
Sarker I, Karim M, E-Barket S, Hasan M
Health Sci Rep. 2024; 7(6):e2154.
PMID: 38812714
PMC: 11130545.
DOI: 10.1002/hsr2.2154.
Sebastianelli A, Spiller D, Carmo R, Wheeler J, Nowakowski A, Jacobson L
Sci Rep. 2024; 14(1):3807.
PMID: 38360915
PMC: 10869339.
DOI: 10.1038/s41598-024-52796-9.
Mobin M, Kamrujjaman M
PLoS One. 2023; 18(12):e0295803.
PMID: 38096143
PMC: 10721108.
DOI: 10.1371/journal.pone.0295803.
Forecasting New Tuberculosis Cases in Malaysia: A Time-Series Study Using the Autoregressive Integrated Moving Average (ARIMA) Model.
Ab Rashid M, Ahmad Zaki R, Wan Mahiyuddin W, Yahya A
Cureus. 2023; 15(9):e44676.
PMID: 37809275
PMC: 10552684.
DOI: 10.7759/cureus.44676.
Towards malaria elimination: analysis of travel history and case forecasting using the SARIMA model in Limpopo Province.
Oyegoke O, Adewumi T, Aderoju S, Tsundzukani N, Mabunda E, Adeleke M
Parasitol Res. 2023; 122(8):1775-1785.
PMID: 37310511
PMC: 10261840.
DOI: 10.1007/s00436-023-07870-y.
A systematic review of dengue outbreak prediction models: Current scenario and future directions.
Leung X, Islam R, Adhami M, Ilic D, McDonald L, Palawaththa S
PLoS Negl Trop Dis. 2023; 17(2):e0010631.
PMID: 36780568
PMC: 9956653.
DOI: 10.1371/journal.pntd.0010631.
: A code for fitting multi-wave epidemic models.
Cunha Jr A, Batista F, Gianfelice P, Oyarzabal R, Grzybowski J, Macau E
Softw Impacts. 2022; 14:100391.
PMID: 35909895
PMC: 9316937.
DOI: 10.1016/j.simpa.2022.100391.
Forecasting the incidence of dengue in Bangladesh-Application of time series model.
Naher S, Rabbi F, Hossain M, Banik R, Pervez S, Boitchi A
Health Sci Rep. 2022; 5(4):e666.
PMID: 35702512
PMC: 9178403.
DOI: 10.1002/hsr2.666.
Empirical Evaluation of Alternative Time-Series Models for COVID-19 Forecasting in Saudi Arabia.
Al-Turaiki I, Almutlaq F, Alrasheed H, Alballa N
Int J Environ Res Public Health. 2021; 18(16).
PMID: 34444409
PMC: 8393561.
DOI: 10.3390/ijerph18168660.
Associations Between Environmental and Sociodemographic Data and Hepatitis-A Transmission in Pará State (Brazil).
Leal P, de Paula Souza E Guimaraes R, Kampel M
Geohealth. 2021; 5(5):e2020GH000327.
PMID: 34027261
PMC: 8128032.
DOI: 10.1029/2020GH000327.
Dynamics of dengue outbreaks in gangetic West Bengal: A trend and time series analysis.
Majhi J, Singh R, Yadav V, Garg V, Sengupta P, Atul P
J Family Med Prim Care. 2021; 9(11):5622-5628.
PMID: 33532405
PMC: 7842458.
DOI: 10.4103/jfmpc.jfmpc_800_20.
How to improve infectious disease prediction by integrating environmental data: an application of a novel ensemble analysis strategy to predict HFMD.
Tao J, Ma Y, Zhuang X, Lv Q, Liu Y, Zhang T
Epidemiol Infect. 2021; 149:e34.
PMID: 33446283
PMC: 8060825.
DOI: 10.1017/S0950268821000091.
Incorporating human mobility data improves forecasts of Dengue fever in Thailand.
Kiang M, Santillana M, Chen J, Onnela J, Krieger N, Engo-Monsen K
Sci Rep. 2021; 11(1):923.
PMID: 33441598
PMC: 7806770.
DOI: 10.1038/s41598-020-79438-0.
Summary of the COVID-19 epidemic and estimating the effects of emergency responses in China.
Tao J, Ma Y, Luo C, Huang J, Zhang T, Yin F
Sci Rep. 2021; 11(1):717.
PMID: 33436848
PMC: 7803947.
DOI: 10.1038/s41598-020-80201-8.
Evaluation of the Models for Forecasting Dengue in Brazil from 2000 to 2017: An Ecological Time-Series Study.
Lima M, Laporta G
Insects. 2020; 11(11).
PMID: 33198408
PMC: 7696623.
DOI: 10.3390/insects11110794.
Weekly dengue forecasts in Iquitos, Peru; San Juan, Puerto Rico; and Singapore.
Benedum C, Shea K, Jenkins H, Kim L, Markuzon N
PLoS Negl Trop Dis. 2020; 14(10):e0008710.
PMID: 33064770
PMC: 7567393.
DOI: 10.1371/journal.pntd.0008710.
Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries.
Takele R
Infect Dis Model. 2020; 5:598-607.
PMID: 32838091
PMC: 7434383.
DOI: 10.1016/j.idm.2020.08.005.
Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data.
Rangarajan P, Mody S, Marathe M
PLoS Comput Biol. 2019; 15(11):e1007518.
PMID: 31751346
PMC: 6894887.
DOI: 10.1371/journal.pcbi.1007518.