» Articles » PMID: 26845196

Actomyosin Ring Driven Cytokinesis in Budding Yeast

Overview
Date 2016 Feb 5
PMID 26845196
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.

Citing Articles

Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast.

Foltman M, Sanchez-Diaz A J Fungi (Basel). 2024; 10(9).

PMID: 39330421 PMC: 11433125. DOI: 10.3390/jof10090662.


Septins function in exocytosis via physical interactions with the exocyst complex in fission yeast cytokinesis.

Singh D, Liu Y, Zhu Y, Zhang S, Naegele S, Wu J bioRxiv. 2024; .

PMID: 39026698 PMC: 11257574. DOI: 10.1101/2024.07.09.602728.


Transient septin sumoylation steers a Fir1-Skt5 protein complex between the split septin ring.

Muller J, Furlan M, Settele D, Grupp B, Johnsson N J Cell Biol. 2023; 223(1).

PMID: 37938157 PMC: 10631487. DOI: 10.1083/jcb.202301027.


A multiscale chemical-mechanical model predicts impact of morphogen spreading on tissue growth.

Ramezani A, Britton S, Zandi R, Alber M, Nematbakhsh A, Chen W NPJ Syst Biol Appl. 2023; 9(1):16.

PMID: 37210381 PMC: 10199952. DOI: 10.1038/s41540-023-00278-5.


Direct observation of the molecular mechanism underlying protein polymerization.

Hundt N, Cole D, Hantke M, Miller J, Struwe W, Kukura P Sci Adv. 2022; 8(35):eabm7935.

PMID: 36044567 PMC: 9432825. DOI: 10.1126/sciadv.abm7935.


References
1.
McMurray M, Thorner J . Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 2009; 4:18. PMC: 2749018. DOI: 10.1186/1747-1028-4-18. View

2.
Shaw J, Mol P, Bowers B, Silverman S, Valdivieso M, Duran A . The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1991; 114(1):111-23. PMC: 2289062. DOI: 10.1083/jcb.114.1.111. View

3.
Yoshida S, Bartolini S, Pellman D . Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev. 2009; 23(7):810-23. PMC: 2666341. DOI: 10.1101/gad.1785209. View

4.
Devrekanli A, Foltman M, Roncero C, Sanchez-Diaz A, Labib K . Inn1 and Cyk3 regulate chitin synthase during cytokinesis in budding yeasts. J Cell Sci. 2012; 125(Pt 22):5453-66. DOI: 10.1242/jcs.109157. View

5.
Bertin A, McMurray M, Grob P, Park S, Garcia 3rd G, Patanwala I . Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci U S A. 2008; 105(24):8274-9. PMC: 2426963. DOI: 10.1073/pnas.0803330105. View