» Articles » PMID: 26842965

ALS-associated Mutant FUS Induces Selective Motor Neuron Degeneration Through Toxic Gain of Function

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Feb 5
PMID 26842965
Citations 185
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

Citing Articles

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Yu H, Yang S, Chen Y, Wu C, Xu J, Yang Y Sci Rep. 2025; 15(1):3635.

PMID: 39880975 PMC: 11779978. DOI: 10.1038/s41598-025-88292-x.


Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis.

Moss K, Saxena S Cells. 2025; 14(1).

PMID: 39791748 PMC: 11719703. DOI: 10.3390/cells14010047.


Exploring the Role of Axons in ALS from Multiple Perspectives.

Chen X, Lv S, Liu J, Guan Y, Xu C, Ma X Cells. 2025; 13(24.

PMID: 39768167 PMC: 11674045. DOI: 10.3390/cells13242076.


New perspectives of the role of skeletal muscle derived extracellular vesicles in the pathogenesis of amyotrophic lateral sclerosis: the 'dying back' hypothesis.

Sbarigia C, Rome S, Dini L, Tacconi S J Extracell Biol. 2024; 3(11):e70019.

PMID: 39534483 PMC: 11555536. DOI: 10.1002/jex2.70019.


HuD impairs neuromuscular junctions and induces apoptosis in human iPSC and Drosophila ALS models.

Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B Nat Commun. 2024; 15(1):9618.

PMID: 39511225 PMC: 11544248. DOI: 10.1038/s41467-024-54004-8.


References
1.
Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T . Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science. 2014; 345(6201):1139-45. PMC: 4459787. DOI: 10.1126/science.1254917. View

2.
Sama R, Ward C, Bosco D . Functions of FUS/TLS from DNA repair to stress response: implications for ALS. ASN Neuro. 2014; 6(4). PMC: 4189536. DOI: 10.1177/1759091414544472. View

3.
Sephton C, Tang A, Kulkarni A, West J, Brooks M, Stubblefield J . Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proc Natl Acad Sci U S A. 2014; 111(44):E4769-78. PMC: 4226112. DOI: 10.1073/pnas.1406162111. View

4.
Qin H, Lim L, Wei Y, Song J . TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proc Natl Acad Sci U S A. 2014; 111(52):18619-24. PMC: 4284588. DOI: 10.1073/pnas.1413994112. View

5.
Hicks G, Singh N, Nashabi A, Mai S, Bozek G, Klewes L . Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet. 2000; 24(2):175-9. DOI: 10.1038/72842. View