6.
Cho H, Shukla S
. Role of Edaravone as a Treatment Option for Patients with Amyotrophic Lateral Sclerosis. Pharmaceuticals (Basel). 2021; 14(1).
PMC: 7823603.
DOI: 10.3390/ph14010029.
View
7.
Brooks B, Berry J, Ciepielewska M, Liu Y, Zambrano G, Zhang J
. Intravenous edaravone treatment in ALS and survival: An exploratory, retrospective, administrative claims analysis. EClinicalMedicine. 2022; 52:101590.
PMC: 9358426.
DOI: 10.1016/j.eclinm.2022.101590.
View
8.
Paganoni S, Hendrix S, Dickson S, Knowlton N, Macklin E, Berry J
. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve. 2020; 63(1):31-39.
PMC: 7820979.
DOI: 10.1002/mus.27091.
View
9.
Paganoni S, Macklin E, Hendrix S, Berry J, Elliott M, Maiser S
. Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. N Engl J Med. 2020; 383(10):919-930.
PMC: 9134321.
DOI: 10.1056/NEJMoa1916945.
View
10.
Miller T, Cudkowicz M, Genge A, Shaw P, Sobue G, Bucelli R
. Trial of Antisense Oligonucleotide Tofersen for ALS. N Engl J Med. 2022; 387(12):1099-1110.
DOI: 10.1056/NEJMoa2204705.
View
11.
Ilieva H, Polymenidou M, Cleveland D
. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol. 2009; 187(6):761-72.
PMC: 2806318.
DOI: 10.1083/jcb.200908164.
View
12.
Lee J, Hyeon S, Im H, Ryu H, Kim Y, Ryu H
. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS. Exp Neurobiol. 2016; 25(5):233-240.
PMC: 5081469.
DOI: 10.5607/en.2016.25.5.233.
View
13.
Philips T, Robberecht W
. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011; 10(3):253-63.
DOI: 10.1016/S1474-4422(11)70015-1.
View
14.
Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg L
. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 2012; 124(3):339-52.
DOI: 10.1007/s00401-012-1022-4.
View
15.
Neumann M, Sampathu D, Kwong L, Truax A, Micsenyi M, Chou T
. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 314(5796):130-3.
DOI: 10.1126/science.1134108.
View
16.
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H
. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006; 351(3):602-11.
DOI: 10.1016/j.bbrc.2006.10.093.
View
17.
Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V
. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain. 2013; 136(Pt 2):471-82.
PMC: 3572934.
DOI: 10.1093/brain/aws339.
View
18.
Brettschneider J, Van Deerlin V, Robinson J, Kwong L, Lee E, Ali Y
. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol. 2012; 123(6):825-39.
PMC: 3521561.
DOI: 10.1007/s00401-012-0970-z.
View
19.
Nishihira Y, Tan C, Onodera O, Toyoshima Y, Yamada M, Morita T
. Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol. 2008; 116(2):169-82.
DOI: 10.1007/s00401-008-0385-z.
View
20.
Fujita K, Kato T, Yamauchi M, Ando M, Honda M, Nagata Y
. Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochem Res. 1998; 23(2):169-74.
DOI: 10.1023/a:1022476724381.
View