» Articles » PMID: 26816624

Vascular Restoration Therapy and Bioresorbable Vascular Scaffold

Overview
Journal Regen Biomater
Date 2016 Jan 28
PMID 26816624
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article.

Citing Articles

Development of 4D-Printed Arterial Stents Utilizing Bioinspired Architected Auxetic Materials.

Kladovasilakis N, Kyriakidis I, Tzimtzimis E, Pechlivani E, Tsongas K, Tzetzis D Biomimetics (Basel). 2025; 10(2).

PMID: 39997102 PMC: 11852449. DOI: 10.3390/biomimetics10020078.


A comprehensive study on venous endovascular management and stenting in deep veins occlusion and stenosis: A review study.

Salimi J, Chinisaz F, Yazdi S Surg Open Sci. 2024; 19:131-140.

PMID: 38690401 PMC: 11058076. DOI: 10.1016/j.sopen.2024.04.001.


A drug-free cardiovascular stent functionalized with tailored collagen supports in-situ healing of vascular tissues.

Wu H, Yang L, Luo R, Li L, Zheng T, Huang K Nat Commun. 2024; 15(1):735.

PMID: 38272886 PMC: 10810808. DOI: 10.1038/s41467-024-44902-2.


Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents.

Das A, Mehrotra S, Kumar A J Funct Biomater. 2023; 14(11).

PMID: 37998113 PMC: 10672426. DOI: 10.3390/jfb14110544.


An extracellular matrix-mimetic coating with dual bionics for cardiovascular stents.

Chen N, Li M, Wu H, Qin Y, Wang J, Xu K Regen Biomater. 2023; 10:rbad055.

PMID: 37359731 PMC: 10287914. DOI: 10.1093/rb/rbad055.


References
1.
Oberhauser J, Hossainy S, Rapoza R . Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention. 2011; 5 Suppl F:F15-22. DOI: 10.4244/EIJV5IFA3. View

2.
Serruys P, Kutryk M, Ong A . Coronary-artery stents. N Engl J Med. 2006; 354(5):483-95. DOI: 10.1056/NEJMra051091. View

3.
Bainey K, Norris C, Graham M, Ghali W, Knudtson M, Welsh R . Clinical in-stent restenosis with bare metal stents: is it truly a benign phenomenon?. Int J Cardiol. 2007; 128(3):378-82. DOI: 10.1016/j.ijcard.2007.06.024. View

4.
Nishio S, Kosuga K, Igaki K, Okada M, Kyo E, Tsuji T . Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation. 2012; 125(19):2343-53. DOI: 10.1161/CIRCULATIONAHA.110.000901. View

5.
Purnama A, Hermawan H, Champetier S, Mantovani D, Couet J . Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomater. 2013; 9(10):8746-53. DOI: 10.1016/j.actbio.2013.02.033. View