» Articles » PMID: 26807198

The Role of FLI-1-EWS, a Fusion Gene Reciprocal to EWS-FLI-1, in Ewing Sarcoma

Overview
Journal Genes Cancer
Specialty Oncology
Date 2016 Jan 26
PMID 26807198
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly FLI-1. The EWS-FLI-1 fusion oncogene is widely believed to play a central role in Ewing sarcoma. The EWS-FLI-1 gene product regulates the expression of a number of genes important for cancer progression, can transform mouse cells such as NIH3T3 and C3H10T1/2, and is necessary for proliferation and tumorigenicity of Ewing sarcoma cells, suggesting that EWS-FLI-1 is the causative oncogene. However, a variety of evidence also suggest that EWS-FLI-1 alone cannot fully explain the Ewing sarcomagenesis. Here we report that FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, is frequently expressed in Ewing sarcoma. We present evidence suggesting that endogenous FLI-1-EWS is required for Ewing sarcoma growth and that FLI-1-EWS cooperates with EWS-FLI-1 in human mesenchymal stem cells, putative cells of origin of Ewing sarcoma, through abrogation of the proliferation arrest induced by EWS- FLI-1.

Citing Articles

Ewing sarcoma from molecular biology to the clinic.

Dupuy M, Lamoureux F, Mullard M, Postec A, Regnier L, Baudhuin M Front Cell Dev Biol. 2023; 11:1248753.

PMID: 37752913 PMC: 10518617. DOI: 10.3389/fcell.2023.1248753.


Human EWS-FLI protein recapitulates in Drosophila the neomorphic functions that induce Ewing sarcoma tumorigenesis.

Molnar C, Reina J, Herrero A, Heinen J, Mendiz V, Bonnal S PNAS Nexus. 2023; 1(4):pgac222.

PMID: 36714878 PMC: 9802468. DOI: 10.1093/pnasnexus/pgac222.


Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications.

Yu L, Davis I, Liu P Cancers (Basel). 2023; 15(2).

PMID: 36672331 PMC: 9857208. DOI: 10.3390/cancers15020382.


Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation.

Orth M, Surdez D, Faehling T, Ehlers A, Marchetto A, Grossetete S Cell Rep. 2022; 41(10):111761.

PMID: 36476851 PMC: 10333306. DOI: 10.1016/j.celrep.2022.111761.


Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma.

Fuest S, Post C, Balbach S, Jabar S, Neumann I, Schimmelpfennig S Cancers (Basel). 2022; 14(19).

PMID: 36230742 PMC: 9564116. DOI: 10.3390/cancers14194819.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H . Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell. 2013; 155(5):1049-1060. PMC: 4010232. DOI: 10.1016/j.cell.2013.10.033. View

3.
Elzi D, Lai Y, Song M, Hakala K, Weintraub S, Shiio Y . Plasminogen activator inhibitor 1--insulin-like growth factor binding protein 3 cascade regulates stress-induced senescence. Proc Natl Acad Sci U S A. 2012; 109(30):12052-7. PMC: 3409757. DOI: 10.1073/pnas.1120437109. View

4.
Lessnick S, Ladanyi M . Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol. 2011; 7:145-59. PMC: 3555146. DOI: 10.1146/annurev-pathol-011110-130237. View

5.
Mackintosh C, Madoz-Gurpide J, Ordonez J, Osuna D, Herrero-Martin D . The molecular pathogenesis of Ewing's sarcoma. Cancer Biol Ther. 2010; 9(9):655-67. DOI: 10.4161/cbt.9.9.11511. View