» Articles » PMID: 26785495

Parkin-mediated Mitophagy Directs Perinatal Cardiac Metabolic Maturation in Mice

Overview
Journal Science
Specialty Science
Date 2016 Jan 20
PMID 26785495
Citations 240
Authors
Affiliations
Soon will be listed here.
Abstract

In developing hearts, changes in the cardiac metabolic milieu during the perinatal period redirect mitochondrial substrate preference from carbohydrates to fatty acids. Mechanisms responsible for this mitochondrial plasticity are unknown. Here, we found that PINK1-Mfn2-Parkin-mediated mitophagy directs this metabolic transformation in mouse hearts. A mitofusin (Mfn) 2 mutant lacking PINK1 phosphorylation sites necessary for Parkin binding (Mfn2 AA) inhibited mitochondrial Parkin translocation, suppressing mitophagy without impairing mitochondrial fusion. Cardiac Parkin deletion or expression of Mfn2 AA from birth, but not after weaning, prevented postnatal mitochondrial maturation essential to survival. Five-week-old Mfn2 AA hearts retained a fetal mitochondrial transcriptional signature without normal increases in fatty acid metabolism and mitochondrial biogenesis genes. Myocardial fatty acylcarnitine levels and cardiomyocyte respiration induced by palmitoylcarnitine were concordantly depressed. Thus, instead of transcriptional reprogramming, fetal cardiomyocyte mitochondria undergo perinatal Parkin-mediated mitophagy and replacement by mature adult mitochondria. Mitophagic mitochondrial removal underlies developmental cardiomyocyte mitochondrial plasticity and metabolic transitioning of perinatal hearts.

Citing Articles

Metaboloepigenetics: Role in the Regulation of Flow-Mediated Endothelial (Dys)Function and Atherosclerosis.

Santos F, Sum H, Yan D, Brewer A Cells. 2025; 14(5).

PMID: 40072106 PMC: 11898952. DOI: 10.3390/cells14050378.


Alterations of PINK1-PRKN signaling in mice during normal aging.

Baninameh Z, Watzlawik J, Hou X, Richardson T, Kurchaba N, Yan T Autophagy Rep. 2025; 3(1).

PMID: 40008113 PMC: 11855339. DOI: 10.1080/27694127.2024.2434379.


Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease.

Xu M, Feng P, Yan J, Li L Front Pharmacol. 2025; 15():1474310.

PMID: 39830343 PMC: 11739169. DOI: 10.3389/fphar.2024.1474310.


Targeting mitochondrial transfer: a new horizon in cardiovascular disease treatment.

Zuo B, Li X, Xu D, Zhao L, Yang Y, Luan Y J Transl Med. 2024; 22(1):1160.

PMID: 39741312 PMC: 11687156. DOI: 10.1186/s12967-024-05979-x.


The molecular mechanisms of cardiac development and related diseases.

Li Y, Du J, Deng S, Liu B, Jing X, Yan Y Signal Transduct Target Ther. 2024; 9(1):368.

PMID: 39715759 PMC: 11666744. DOI: 10.1038/s41392-024-02069-8.


References
1.
Pagliarini D, Calvo S, Chang B, Sheth S, Vafai S, Ong S . A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134(1):112-23. PMC: 2778844. DOI: 10.1016/j.cell.2008.06.016. View

2.
Kim K, Stevens M, Akter M, Rusk S, Huang R, Cohen A . Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest. 2011; 121(9):3701-12. PMC: 3171101. DOI: 10.1172/JCI44736. View

3.
Eschenbacher W, Song M, Chen Y, Bhandari P, Zhao P, Jowdy C . Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila. PLoS One. 2012; 7(9):e44296. PMC: 3434137. DOI: 10.1371/journal.pone.0044296. View

4.
Shin J, Ko H, Kang H, Lee Y, Lee Y, Pletinkova O . PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell. 2011; 144(5):689-702. PMC: 3063894. DOI: 10.1016/j.cell.2011.02.010. View

5.
Bhandari P, Song M, Chen Y, Burelle Y, Dorn 2nd G . Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ Res. 2013; 114(2):257-65. PMC: 4392818. DOI: 10.1161/CIRCRESAHA.114.302734. View