» Articles » PMID: 26759838

Interfacial Nano-biosensing in Microfluidic Droplets for High-sensitivity Detection of Low-solubility Molecules

Overview
Specialty Chemistry
Date 2016 Jan 14
PMID 26759838
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Taking advantage of the properties of the high surface-area-to-volume ratio of microfluidic droplets, we developed an innovative interfacial nanosensing strategy based on aptamer-functionalized graphene oxide nanosensors in microfluidic droplets for the high-sensitivity one-step detection of 17β-estradiol and other low-solubility molecules, with the detection sensitivity improved by about 3 orders of magnitude compared to conventional systems.

Citing Articles

Microfluidics engineering towards personalized oncology-a review.

Mishra S, Kumarasamy M In Vitro Model. 2025; 2(3-4):69-81.

PMID: 39871996 PMC: 11756504. DOI: 10.1007/s44164-023-00054-z.


Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis.

Tavakoli H, Mohammadi S, Li X, Fu G, Li X Trends Analyt Chem. 2023; 157.

PMID: 37929277 PMC: 10621318. DOI: 10.1016/j.trac.2022.116806.


A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases.

Tavakoli H, Hirth E, Luo M, Timilsina S, Dou M, Dominguez D Lab Chip. 2022; 22(23):4693-4704.

PMID: 36349548 PMC: 9701502. DOI: 10.1039/d2lc00834c.


Effect of Organic Solvents on a Production of PLGA-Based Drug-Loaded Nanoparticles Using a Microfluidic Device.

Bao Y, Maeki M, Ishida A, Tani H, Tokeshi M ACS Omega. 2022; 7(37):33079-33086.

PMID: 36157756 PMC: 9494669. DOI: 10.1021/acsomega.2c03137.


Microfluidic chip enables single-cell measurement for multidrug resistance in triple-negative breast cancer cells.

Parekh K, Noghabi H, Lopez J, Li P Cancer Drug Resist. 2022; 3(3):613-622.

PMID: 35582454 PMC: 8992477. DOI: 10.20517/cdr.2019.77.


References
1.
Yildirim N, Long F, Gao C, He M, Shi H, Gu A . Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ Sci Technol. 2012; 46(6):3288-94. DOI: 10.1021/es203624w. View

2.
Santen R, Demers L, Ohorodnik S, Settlage J, Langecker P, Blanchett D . Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids. 2007; 72(8):666-71. DOI: 10.1016/j.steroids.2007.05.003. View

3.
Budzinski H, Devier M, Labadie P, Togola A . Analysis of hormonal steroids in fish plasma and bile by coupling solid-phase extraction to GC/MS. Anal Bioanal Chem. 2006; 386(5):1429-39. DOI: 10.1007/s00216-006-0686-9. View

4.
Song H, Chen D, Ismagilov R . Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl. 2006; 45(44):7336-56. PMC: 1766322. DOI: 10.1002/anie.200601554. View

5.
Kim Y, Jung H, Matsuura T, Lee H, Kawai T, Gu M . Electrochemical detection of 17beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron. 2006; 22(11):2525-31. DOI: 10.1016/j.bios.2006.10.004. View